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Abstract
Deformation monitoring of structures is one of the main tasks of engineering geodesy. In the
projects related with deformation monitoring, terrestrial laser scanning (TLS) has become a pow-
erful tool among all the data acquisition approaches due to its high precision and spatial resolution
in capturing 3D point clouds. Therefore, it allows to entirely monitor the behavior of objects. The
challenge lies in the definition and computation of the difference between the 3D point clouds in
order to model the deformations. Various methods exist, from which the geometry-based method
is one of the most popular ones. The key procedure in this strategy is to approximate the point
cloud of an epoch by mathematic models, mostly in a linear Gauss-Markov model. The geometry
changes of the object are detected by comparing the approximated models of various epochs. The
traditional manual deformation monitoring is increasingly automatized in order to be easily imple-
mented and cost-efficient. The automatic selection of an adequate mathematic model in the data
approximation, which includes stochastic and functional parts, is the basis of the automization of
the deformation monitoring procedure and will have influence on the reliability of the results.

The thesis carries out some investigations in the above-mentioned background. In the initial study,
the risk of a commonly misspecified variance-covariance matrix (VCM), i.e. neglecting the math-
ematical correlations and assuming homoscedasticity, on the results of a congruency test, is high-
lighted. The significant influence of a misspecified stochastic model on the deformation judgment
motivates further investigations on a refined, heteroscedastic VCM based on a more detailed uncer-
tainty budget of TLS measurements. The specified VCM can in generally be evaluated by means
of two hypothesis testing procedures, i.e. a nested model misspecification test and a non-nested
model selection test. In addition, the functional model also has strong influence on the defor-
mation decision. Under this consideration, the more flexible B-spline models are applied in the
approximation and their performances are compared statistically with that of polynomial models
in two case studies, where the superiority and limitation of them are exemplarily revealed. Be-
sides the widely-used model selection procedures based on information criteria, we adopted two
of the hypotheses test-based approaches, i.e. simulation-based Cox’s test and Vuong’s non-nested
test, to generally discriminate statistically between parametric models. The introduced automatic
selection processes for the stochastic and functional models significantly improve the quality of
the deformation monitoring process. It is therefore the basis for an interdisciplinary monitoring
process.

Keywords: terrestrial laser scanning, deformation monitoring, congruency test, variance-covariance
matrix, functional model, B-spline, hypothesis test
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Zusammenfassung
Die Überwachung von künstlichen und natürlichen Objekten ist eine Hauptaufgabe der Ingenieur-
geodäsie. Aufgrund seiner hohen Präzision und räumlichen Auflösung ist das terrestrische Laser-
scanning (TLS) unter allen Vorgehensweisen für die Datenerfassung ein weit anerkanntes Ver-
fahren in der Deformationsüberwachung geworden. Es ermöglicht somit die quasi vollständige
Überwachung von Objekten. Die größte Herausforderung liegt in der Vergleichbarkeit der 3D-
Punktwolken. Hierfür existierten eine Reihe von Methoden, unter denen die geometrie-basierte
Methode die bekannteste ist. Das zentrale Vorgehen basiert auf der Approximation der 3D-
Punktwolke einer Epoche mit einem parametrischen Modell, zumeist mit Hilfe eines linearen Gauss-
Markov Modells. Die geometrischen Veränderungen des Objektes werden dann durch den Vergleich
der approximierten Modelle aus verschiedenen Epochen ermittelt. Die herkömmliche manuelle De-
formationsanalyse wird zunehmend automatisiert, um einfach und kostengünstig implementiert zu
werden. Die automatische Anwendung eines adäquaten mathematischen Modells in der Datenap-
proximation, das stochastische und funktionale Teile umfasst, ist die Grundlage für die Automa-
tisierung des Deformationsprocesses. Dies hat einen signifikanten Einfluss auf die Zuverlässigkeit
der Ergebnisse.

Aus diesem Grund beschäftigt sich die Dissertation mit den oben genannten Themen. In der er-
sten Studie wird die Gefahr einer fehlerhaften Spezifikation der Varianz-Kovarianz-Matrix (VKM),
insbesondere durch Nichtbeachtung der mathematischen Korrelationen und der Annahme der Ho-
moskedastizität, auf die Ergebnisse des Kongruenztestes, diskutiert. Der signifikante Einfluss
eines fehlerhaft spezifizierten stochastischen Modells auf den Kongruenztest begründet die weit-
ere Forschung über eine verfeinerte, heteroskedastische VKM, die auf einem detaillierteren Un-
sicherheitsbudget von TLS-Messungen basiert. Die spezifizierte VKM wird durch zwei Hypothe-
sentests bewertet: den „nested model misspecification test˝und den „non-nested model selection
test˝, welche generell auch für die Validierung weiterer Versuche benutzt werden können. Darüber
hinaus hat das funktionale Modell auch einen starken Einfluss auf die Qualität der Ergebnisse.
Daher werden flexible B-Spline Modelle in der Approximation angewendet und mit polynomialen
Modellen in zwei Fallstudien statistisch verglichen, sodass die Überlegenheit und Einschränkun-
gen der beiden Verfahren beispielhaft gezeigt werden kann. Neben den weit verbreiteten auf
Informationskriterien basierenden Modellauswahlverfahren wurden im Rahmen der Dissertation
zwei hypothesentest-basierte Herangehensweisen verwendet. Mit Hilfe des „simulation-based Cox’s
test˝und des „Vuong’s non-nested test˝wird statistisch zwischen parametrischen Modellen unter-
scheiden. Die eingeführten Beurteilungsverfahren für die stochastischen und funktionalen Mod-
elle tragen zu einer signifikanten Qualitätssteigerung des Überwachungsprozesses bei. Die Vorge-
hensweise ist damit die Basis für das interdisziplinäre Monitoring.

Stichworte: Terrestrisches Laserscanning, Deformationsüberwachung, Kongruenztests, Varianz-
Kovarianz-Matrix, B-Spline, funktionales Modell, Hypothesentests
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1 Introduction

1.1 Motivation of the study

For the sake of personal safety and a proper security, the society has the need in minimizing the
risk that can occur due to unexpected collapses of natural and artificial objects. Structural safety
monitoring (e.g. for bridges, tunnels, dams, and tall buildings, etc.) allows us to see what is
happening to the objects over time. Structures might appear static to the casual observer, but
the forces of wind, temperature, traffic load and geologic hazard may affect their shape, size and
location. Such changes are collectively referred to as deformations. Deformation of a structure can
produce long-term damage and may ultimately lead to structural failure, that’s why deformation
monitoring has become one of the main tasks as well as the most common application of engi-
neering geodesy. With the development of software and hardware elements, the traditional manual
deformation monitoring is increasingly automatized. The highly automatic deformation monitoring
system optimizes the manual fieldwork by setting up automatic measurement schedules to collect
data at regular intervals. Based on the measurements, the geometry changes of objects can be
detected and quantified, which are used for the further comprehensive deformation analysis.

Compared with traditional point-wise deformation monitoring, terrestrial laser scanning (TLS) has
become a powerful tool in this field due to its high precision and spatial resolution in capturing 3D
point clouds which facilitate to entirely monitor the behaviour of objects. Deformation monitoring
through point clouds can be based on different comparison methods, one of the most popular is the
geometry-based approach, i.e. to compare the approximated mathematical models which describe
the geometrical features of the object in various epochs. The key point in deformation monitoring
is to decide whether a significant geometry change actually occurs between two or more measured
epochs. In other words, the congruency problem for the repeated measured epochs has to be solved.
The focus of the thesis lies on the statistical congruence judgments and the influence factors, i.e.
the misspecified stochastic model and inadequate functional model, that may affect the decisions.
Furthermore, to guarantee the reliability of judgments on the possible geometry changes, efforts
are devoted to developing model selection approaches based on the hypotheses testing framework
for both stochastic and functional models. It is noticeable that the automatic model selection
approaches serve as the basis of the automization of geometry-based deformation monitoring pro-
cedure. Therefore, we use the term “monitoring” in the title.

The congruency tests proposed by Pelzer (1971) are usually employed to solve this kind of problem,
which have proved to be the uniformly most powerful invariant (UMPI) test in the Gauss-Markov
models (GMM) with normal random deviations and specified variance-covariance matrix (VCM)
(cf. Kargoll, 2012, Chapter 3). In geometry-based deformation monitoring, the correctness of the
approximated mathematical model serves as the prerequisite of the UMPI property for the congru-
ency test. The parameters of the mathematical model are in most cases estimated in a least-squares
adjustment where the reliable adjusted results depends both on the selected functional model, i.e.
the relationship between the parameters to be estimated and the observations, as well as on the
stochastic model, i.e. the VCMs. Consequently, on the one hand, it is crucial to approximate the
scattered points by a proper functional model to describe the geometrical changes; on the other
hand, searching for a realistic stochastic model and developing the statistical approach to evaluate
its adequacy is also relevant.

1



1 Introduction

1.2 Proposal and content
Since the optimality of the congruency test only applies on the prerequisite of adequate estimations,
the misspecified functional or stochastic model may weaken the power of the test. As the initial
research, in the context of adequate functional models, the risk of commonly misspecified VCMs,
i.e. neglecting heteroscedasticity or mathematical correlation, on the power of congruency test, is
highlighted.

The significance of a realistic VCM for the congruency test motivates the further research on a
refined, heteroscedastic VCM based on a more detailed uncertainty budget of TLS measurements.
The correctness of a specified VCM in the context of the given dataset is further statistically eval-
uated by means of a nested model misspecification test and a non-nested model selection test. The
aims of this study is not only to provide the results of an initial attempt of specifying VCM for TLS
measurements, but also to present testing procedures which will in the future be used to validate
further attempts at improving the stochastic model for TLS measurements.

As the other pillar of the least-squares adjustment, the functional model also has strong influence
on the congruency test. Commonly, the most parsimonious, yet sufficiently accurate functional
model for the object is selected through information-theoretic approaches, i.e. Akaike information
criterion (AIC) and the Bayesian information criterion (BIC). As an alternative solution, our focus
lies on the hypotheses test-based approaches. They offer the advantage that the significant prob-
abilistic differences between models can be detected. These information has not been provided by
the methods mentioned previously. In the following numerical examples, two of the commonly used
parametric models, i.e. polynomials and B-splines, are approximated with similar parameters and
discriminated statistically under the given dataset. Besides providing alternative model selection
approaches, in the numerical examples, we also try to reveal the performance of competing models
in reflecting detailed geometries and their robustness when data gap exists.

The investigation, on the one hand, reveals the great significance of the specified VCMs and ade-
quate functional model in geometry-based deformation monitoring. On the other hand, the thesis
develops and applies the statistical evaluation approaches, which serve as alternative ways beyond
the global test and information-theoretic approaches, in selecting the proper stochastic and func-
tional models. The thesis is structured as follows. Chapter 2 introduces the basics of TLS, i.e.
classification, scanning principal, error budgets and calibration approaches, as well as the proce-
dures of TLS-based deformation monitoring (field work, data pre-processing and methodology).
Chapter 3 provides the commonly-used deformation models. In particular, the congruency model
is introduced and the significant influence of the misspecified stochastic models on the congruency
based deformation analysis is highlighted. Motivated by the results of Chapter 3, the subsequent
research, which is shown in Chapter 4, attempts to establish a refined stochastic model, which is
evaluated statistically through testing procedures. The focuses of Chapter 5 lies on the selection
of proper parametric models to approximate the point clouds by means of hypotheses test-based
approaches. In addition, the performances of the commonly-used parametric models, i.e. B-splines
and polynomials, are compared and discussed in two case studies. Chapter 6 concludes the thesis
and gives an outlook on open questions.
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2 On the application of TLS in deformation
monitoring

The traditional methods of point-wise deformation monitoring technology with global navigation
satellite systems (GNSS), tacheometers and levels have in many cases been surpassed by the use
of TLS, which allows a better discretization in time and in the space of an object. Therefore TLS
facilitates a more realistic modeling of the deformation. In this chapter, the basics of TLS, i.e.
the classification according to the ranging approaches and scanning principal, are outlined in the
subsection 2.1. Since errors are inevitable in data acquisition procedures, the error budget of TLS
measurements caused by various influence factors are roughly summarized in the subsection 2.2.
The main focus of this chapter lies on the subsection 2.3, where the procedure of deformation
monitoring with TLS measurements is explained.

2.1 Fundamentals of TLS

The TLS systems are characterized by the non-contact measurement techniques and sequentially
generate 3D coordinates of a surface in a given field of view with an intensity value as a fourth
dimension. The raw measurements of TLS are polar coordinates of each point, i.e. range, horizon-
tal and vertical angles1, which are further automatically converted to 3D Cartesian coordinates.
Accordingly, the core components of TLS are the ranging and beam deflection systems.

2.1.1 Range measurement system

The non-contact ranging approach is the key component of airborne and terrestrial laser scanner.
As summarized by Vosselman and Maas (2010, subsection 1.1), there are in general two methods
for optically measuring the distance: light transit time estimation and triangulation. In the former
method, time of light traveling in the medium can be estimated either directly via timer or indirectly
via phase measurement in continuous wave lasers.

Time-of-fight measurement The assumption behind a time-of-fight (TOF) ranging system is that
light waves travel with a known velocity in the specific medium. Thus, the distance ρ between
sensor and reflective target surface is estimated as the product of the specific propagation
speed of light and the runtime

ρ = c

n

τ

2 (2.1)

where c = 299792.458 km/s is the light propagation velocity in a vacuum. It is characterized
by the refractive index n which mainly depends on the wave length, air temperature, pressure,
and humidity. The time delay is assumed as half of the round trip duration τ from the sensor
to reflective target surface and back to the senors. It is obvious that the determination of
τ is the essential part of TOF ranging systems. The time detector will generate a time-
tagged trigger pulse depending on the implemented criterion, i.e. when the echo reaches a

1The terms horizontal and vertical angles are strictly only defined for leveled instruments. For the non-leveled ones
this is different. In the following, these terms should be continued throughout the thesis for both the leveled and
non-leveled instruments
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2 On the application of TLS in deformation monitoring

peak, certain threshold or constant fraction with the maximum amplitude (cf. Vosselman and
Maas, 2010, pp. 3ff.).
The standard deviation σr−p of the range measurement for a single pulse buried in additive
white noise is approximately given by

σr−p ≈
c

2
tr√
SNR

(2.2)

where tr is the rise time of the laser pulse and the SNR is the power ratio of signal over noise.
Generally the pulse-based TOF systems are characterized by a long range (several hundred
meters) but, commonly, lower data rates.

Phase measurement techniques As an alternative approach to directly record the light transit
duration, the time delay can be estimated by the phase difference ∆ϕ of the emitted and
received signal,

τ = ∆ϕ

2π
λm
c/n

(2.3)

where λm is the wavelength of the amplitude modulation and hence the range is found using
Equation (2.1). The standard deviation of the range measurement by this approach σr−AM
is approximately given by

σr−AM ≈
1

4π
λm√
SNR

(2.4)

It is indicated by Equation (2.4) that a smaller wavelength makes the phase detection more
precise and in consequence lead to a more accurate distance measurement. Applying the wave
characterized with a small wavelength would in fact result in a smaller ambiguity interval
which means the distance always includes N full wavelengths λm. In that case, the multiples
of wavelength Nλm have to be added to the fractional part recorded by phase difference
(∆ρ = ∆ϕ·λm

2π ), however, it is not possible to determine N by a single phase measurement.
In order to solve this problem, various wavelengths are applied: the large-length wave is in
charge of a potentially large ambiguity interval while a small wave length ensures a desirable
precision. Typical commercial phase-based measurement systems are characterized with high
data rates but shorter operating ranges (cf. Vosselman and Maas, 2010, pp. 5ff.), which is
much improved by nowadays scanners. For instance, the Zoller+Fröhlich IMAGER 5016 laser
scanner has been extended up to 360 m while it has maximum measurement rate of more
than 1 million points per second, which guarantees a high resolution of object even for long
distances.

Triangulation While the light transit time estimation approaches are usually applied for mid- and
long-range TLS, the triangulation principal is popular in close range measurements smaller
than 5 m. The triangulation method is based on the cosine law by constructing a triangle and
calculating the distance using the baseline length as well as the interior angles of illumination
and reflection lines relative to the baseline. Since the triangulation-based systems usually find
their application in medical and industrial measurements instead of engineering surveying, it
is beyond the scope of this thesis. Interested readers are referred to Blais (2004) and Kanade
(2012, pp. 63-97).

2.1.2 Beam deflection system
Scanning the object requires the single laser beam to move over the surface, hence, the laser beam
is deflected in horizontal and vertical direction. For TLS, the beam deflection can be done in one
of the following ways (cf. Reshetyuk, 2009, pp. 16ff.):

4



2.2 Error sources for TLS measurements

1. Two orthogonally mounted mirrors are included so that both horizontal and vertical deflec-
tions are realized by mirror oscillations as shown in Figure 2.1 top left. This is typical for
TLS with a camera-like (or window-like) field of view (FOV) which can only capture data
within a certain field. This mechanism is common for pulse-based TOF systems, which are
characterized by a slower range measurement compared with phase-based techniques.

2. The laser beam is deflected in vertical direction by rotating or oscillating a mirror combined
with a horizontal 360◦ rotation of a scanner head with the help of a servomotor, which is shown
in Figure 2.1 top middle. This is typical for hybrid laser scanners which are characterized by
the 360◦ horizontal FOV yet limited vertical FOV.

3. Similar with hybrid scanners, the scanning head rotates horizontally for 360◦, however, the
laser beam is deflected by the monogon mirror which may efficiently provide max 360◦ vertical
FOV (Figure 2.1 top right). This mechanism is used for the panoramic scanners and is often
combined with the phase-based ranging technique due to its rapid measurements.

Figure 2.1: Top: types of laser beam deflection units used in TLS. Bottom: types of TLS according
to the field-of-view (FOV) (cf. Reshetyuk (2009)).

2.2 Error sources for TLS measurements
As other surveying techniques, the TLS measurements have imperfections that give rise to errors
in the measurement results. It is necessary to investigate the errors in order to evaluate the
performance of the instrument and the data quality which is known as coordinate precision or
accuracy of 3D points. It is indicated by many references that the single-point coordinate precision
of TLS is in the sub-centimeter range which is commonly not as good as traditional geodetic
surveying approach, i.e. total station. However, the high density of the scanning observations

5



2 On the application of TLS in deformation monitoring

facilitates a higher precision via supplicating of least-squares based curve or surface estimation.
Consequently, in most applications of TLS, such as deformation monitoring, the measurements
are approximated by certain mathematical model in a linear GMM (refer to subsection 2.3.4).
A comprehensive uncertainty budget is the significant basis for the realistic stochastic model in
least-squares approximation and the further deformation monitoring process.

2.2.1 Influence factors for the errors
Traditionally, the measurements are imperfect due to the outliers and errors. The outliers in the
experiments can lead to serious problems in further data analyses and thus need to be detected
and eliminated. In the geodetic field, the outlier detection is firmly based on the fundamentals of
statistical hypotheses testing procedures (cf. Lehmann and Lösler, 2016; Teunissen and de Bakker,
2013). In this dissertation, an ideal condition is assumed that there is no outlier in the dataset.
Since the robust estimation approaches for free-form curves are investigated by another colleague in
our research group (Bureick et al., 2016b), it can be applied in the further research for the dataset
containing outliers.

The errors are classified into two groups, namely, random and systematic errors. As defined by the
Guide to the Expression of Uncertainty in Measurement (GUM): “Random error presumably arises
from unpredictable or stochastic temporal and spatial variations of influence quantities” (JCGM,
2008, subsection 3.2.2). Since the expectation of a random error is assumed as zero, according
to the law of large numbers, the influence of random errors can usually be reduced by increasing
the number of observations. By contrast, the systematic error is assumed as constant and usually
“arises from a recognized effect of an influence quantity on a measurement result” (JCGM, 2008,
subsection 3.2.3). The systematic error can be quantified through calibration procedures and a
correction is applied to compensate for the effect. Specifically, the errors of TLS measurements can
be divided into instrumental, object-related, and atmospheric influence factor (cf. Reshetyuk 2009,
Chapter 3; Soudarissanane 2016, subsection 2.3).

Instrumental influence factors The imperfections in instrument manufacturing and assembling
give rise to errors in the measurements. For example, the vertical, horizontal and collimation
axes of the TLS are assumed to be mutually orthogonal and to intersect at a common point.
However, these conditions are in general hardly met in a real system which leads to the axis
errors.

In the range measurement system, besides the random error for time-of-flight and phase mea-
surement techniques (refer to equation (2.2) and (2.4) ), there are additional systematic errors
such as the zero-offset error which is due to the discrepancy between electrical and mechanical
zero positions at the scanner, scale error which is a scale factor in the measured distance, and
time discriminator errors.

Moreover, the beam deflection system has influences on the accuracy of the angle measure-
ments. Although the scanners with polygonal and oscillating mirrors have separate error
sources, the angle measurements of both types are influenced by the quality of the angular
position sensors, the imperfections of the rotating mirrors and the misalignment of mirrors,
and encoders.

Atmospheric influence factors Between the emitter and reflective target surface, the laser beam
travels through the air. Thus, the atmospheric conditions, e.g. ambient temperature, pres-
sure, relative humidity, illumination, vibration etc., will affect the laser beam propagation.

Specifically, on the one hand, laser power can be attenuated, i.e. the signal intensity be-
comes weaker as it travels through the medium, due to molecular absorption and scattering
(Weichel, 1990, Chapter 2 and Chapter 3). On the other hand, the atmospheric turbulences
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2.2 Error sources for TLS measurements

caused by temperature differences and involved particles give rise to beam wander, i.e. the
beam displacement from the initial propagation direction, and beam distortion, i.e. a pulse
would be elongated or shortened and thus the wavelength is changed (Blais, 2004; Borah
and Voelz, 2007). In normal applications of TLS, the influence of atmospheric turbulence
is not significant in the distance range of up to some hundreds of meters if the atmospheric
parameters are additionally measured (Hejbudzka et al., 2010).

For the long-range measurements up to a few kilometers, the atmospheric refraction would
significantly affect the measurements by leading to artifacts that are not relevant in close-
range cases. These artifacts are generally caused by instabilities of instruments, e.g. caused by
wind, and atmospheric refraction. It is suggested by Friedli et al. (2019) that the monitoring
over long ranges should be carried out in the evening after the sunset.

Object-related influence factors Since the TLS is characterized by reflectorless measurement tech-
nologies, the performance is affected and limited by the reflectance which is defined as the
ratio between reflected and incident laser power (cf. Ingensand et al. (2003)). The reflectance
is highly dependent on the emitted and reflected beam which essentially depends on the
wavelength, incidence angle, and object properties (Soudarissanane and Lindenbergh, 2011;
Zámečníková et al., 2015), e.g. optical properties of materials, surface color, roughness and
temperature (Lichti and Harvey, 2002; Nyland, 1998; Zámečníková et al., 2014; Schäfer, 2017,
Chapter 5). Although object-related influences are clearly detected, it is still challenging to
model them separately due to the unclear correlation with other influence factors. Further-
more, the objects properties are usually unknown, which increases the difficulty to specify
the object-related errors.

Additionally, there are methodological errors, also named as scanning geometry errors. They are
related to the methods which are employed to collect and register multiple point clouds into a
common coordinate system. Since this type of errors is not generated during scanning procedure
where our focus lies on, the interested readers are referred to Lichti and Gordon (2004), Wujanz
and Neitzel (2016), Soudarissanane (2016, subsection 2.3), Reshetyuk (2009, subsection 3.5) and
Schäfer (2017, Chapter 4).

2.2.2 State of the art in TLS calibration
As mentioned previously, the random errors of TLS are assumed to be reduced by adjusting the
highly dense observations, whereas the systematic errors are quantified through calibration proce-
dures. In general, the TLS can be calibrated either in the individual components or as a complete
system.

Since a TLS is the combination of ranging and angular measurement systems which are used in
existing instruments, i.e. electronic distance meters (EDM), theodolite and total stations, the
component calibration can in principal make use of the procedures in calibrating these traditional
instruments. However, problems of direct applying the existing calibration procedures for TLS lie
in the inability of exactly centering the scanner in a known point as well as repeatedly scanning the
same point in a non-target observation procedure (cf. Vosselman and Maas, 2010, pp. 122ff.). These
limitations are treated by hardware developments and adjusting geometry parameters, e.g. center
points or diameters of spherical targets, as references. These procedures have been used for cali-
brating various TLS systems. Schulz (2008) designed several experiments to calibrate the distance
and angle measurement systems of a Zoller+Fröhlich IMAGER 5003 TLS in both statistic and
scanning mode through comparing the scanning measurements with the references, i.e. measure-
ments from interferometer, total station and theodolite. Salo et al. (2008) calibrated the ranging
system of a TLS Faro LS880 HE80 by comparing the scanning measurement with results obtained
with a robot tacheometer, while Neitzel (2007) calibrated the axis errors for Zoller+Fröhlich IM-
AGER 5003 laser scanner. The manufactures also undertake the obligations of calibrating TLS

7
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and offering prior to delivery and offering the datasheet to users. Among all the manufactures, the
calibration procedures of P- and C-series laser scanners from Leica Geosystems are available for
users and are explained in Walsh (2014), where several telescopes are employed to calibrate the
angle and ranging systems.

On the contrast, the system calibration procedure usually requires no special equipment or fa-
cilities, such as total station and theodolite which are used in the component calibration. The
systematic errors, which are treated as additional parameters involved in a observation model,
are estimated simultaneously with coordinates of the target points in the adjustment procedure.
Summaries on the subject are presented by Lichti (2007), Schneider and Schwalbe (2008) and by
Pareja et al. (2013). Furthermore, the problems involved in the self-calibration approaches are
investigated in the latter literatures, e.g. Chow et al. (2011), Al-Manasir and Lichti (2015), and
Muralikrishnan et al. (2018). Since high correlations are present between the estimated parameters,
Lichti (2010) and Reshetyuk (2010) were searching for solutions to decorrelate them. Meanwhile, Li
et al. (2018) updated the self-calibration experiment by omitting auxiliary targets and presented a
background target-based autonomous method for TLS self-calibration. Apart from the traditional
network-based calibration methods, Holst and Kuhlmann (2014) and Medić et al. (2017) proposed
a two-face self-calibration method using only one single station. Ge (2016, Chapter 4) studied on
the experiment configuration, i.e. reasonable number of targets and scanning strategies, during
calibration procedure. Wang (2013b, subsection 5.4) proposed a combined model to solve the point
registration and calibration parameters simultaneously.

2.3 Deformation monitoring with TLS measurements

Deformation monitoring of structures is a common application and one of the major tasks of en-
gineering geodesy. A number of artificial and natural objects require monitoring, such as dams,
tunnels, high-rise buildings, bridges, industrial complexes, slopes, glaciers, areas of landslides, subsi-
dence, and crustal motion (cf. Ogundare, 2015, p. 1). Traditional geodetic monitoring technologies,
i.e. total stations, precise levels and GNSS positioning, are characterized by point-wise deformation
analysis in a ground surface network. In contrast, TLS has significant advantage in deformation
monitoring due to its high precision and spatial resolution in capturing 3D point clouds. Although
the single-point precision of TLS is inferior to traditional geodetic technologies, i.e. in the sub-
centimeter range, the high density of the scanning observations facilitates a higher precision via the
application of least-squares based curve or surface estimation and, hence, an adequate precision
of the estimated deformation parameters can be obtained (Monserrat and Crosetto, 2008; Gordon
and Lichti, 2007; Neuner et al., 2016).

There are plenty of references on the topic of TLS-based deformation monitoring, among which
only some exemplary very important references are cited in this section. In the tunnel deforma-
tion monitoring, Lindenbergh et al. (2009), Nuttens et al. (2010), Jian et al. (2012) and Xie and
Lu (2017) offered various strategies which are illustrated on a series of experiments. The bridge
deformation monitoring is conducted by Zogg and Ingensand (2008), Neitzel et al. (2012), Neuner
et al. (2014), Lõhmus et al. (2018) and Truong-Hong and Lindenbergh (2019), while Bitelli et al.
(2004) and Herrero-Huerta et al. (2016) applied the TLS to quantify the geomorphological change
caused by landslides. For other large structures, Alba et al. (2006) and Eling (2009) presented
the procedures and results of TLS-based deformation monitoring of large concrete dams, while
Pesci et al. (2015), Camarda et al. (2010), Dutescu (2006), and Tapete et al. (2013) monitored the
changes of historical buildings based on TLS for the purpose of protection.

For the above mentioned TLS-based deformation monitoring projects, the typical workflow and
data processing steps involved are introduced in the following subsections.
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2.3.1 Design of measurement scheme
In the design stage of deformation monitoring, the setup for scanning, i.e. location and number of
view points, should be arranged to balance two aspects. On the one hand, it is necessary to ensure
that the scanning object is within the measurement range of the scanner and there are sufficient
overlaps between the individual scans for the further georeferencing process. On the other hand,
too many scanning stations are computationally intensive to register the point clouds and are
inefficient from an economic point of view. A trade-off between the number of acquisitions and
the computational efforts and costs needs to be defined (Soudarissanane and Lindenbergh, 2011;
Wujanz and Neitzel, 2016).

If the traditional indirect georeferencing approach is used in the pre-processing procedure, the
positions of control points should be obtained in this step. Since the changes of control points
may cause a biased estimation of the transformation parameters and thus affect the deformation
detection, it is necessary to ensure the stability of the control points in all measurement campaigns.

2.3.2 Data collection
After a comprehensive design of the view points, the TLS is set up at the defined locations for
data collection. The scan settings, e.g. resolution and scanning mode, are depending on the
specific application. Generally speaking, the higher the spatial resolution, the lower the temporal
resolution. The traditional mode of TLS is the 3D mode (spatial mode), where the maximum
spatial resolution as well as minimum temporal resolution is available (Paffenholz et al., 2008).
For smaller scanning windows, the temporal resolution can be increased. When the deformation
happens in one major direction, the 2D mode (profiler mode) is applied to improve the efficiency of
field work (Hesse et al., 2006). In the profiler mode, the rotation of the scanner about its vertical
axis is disabled. The reduced spatial dimension facilitates a higher temporal resolution. Besides,
the 1D mode (statistic mode) allows the highest sampling rate so that it finds its application in
the monitoring kinematic processes (Neitzel et al., 2012).

As introduced in section 2.1, the raw measurements of TLS are polar coordinates with range
and angles, which are automatically converted by the internal software of TLS into Cartesian
coordinates. Thus, the typical outcome of laser scanners are 3D coordinates, intensity information
and echo waveform. The nowadays generation of TLS has often also a camera included which
provides color information for the 3D point cloud.

2.3.3 Data pre-processing
Georeferencing/registrition of point clouds After data collection, the initial operation is to trans-

form several epochs point clouds into a common reference coordinate system, which is the
so called georeferencing or registration process. The main difference between them is that
the common reference frame in georeferencing process is absolutely established by additional
geodetic observations while the registration process only focus on the collected point clouds
and is referred to as a relative orientation (cf. Paffenholz 2012, Chapter 2; Vosselman and
Maas 2010, subsection 3.3). Both strategies are realized by transformation parameters, i.e.
rotation matrix and translation vector. Consequently, the process typically involves two dis-
tinct steps: determination of the transformation parameters and transformation of all the
point clouds into an identical coordinate system. Figure 2.2 shows the commonly-used geo-
referencing approaches, which are based on the overview of Neitzel and Neumann (2013).

Generally speaking, there are direct and indirect (object space-based) georeferencing ap-
proaches. The former are characterized by using additional sensors, such as inclinometers,
compasses, inertial measurement units (IMU), GNSS systems and laser trackers (Zimmer-
mann et al., 2018; Paffenholz, 2012; Ehm, 2012; Kersten et al., 2009; Schuhmacher and Böhm,
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Figure 2.2: Overview of the georeferencing approaches.

2005), which are employed to position the laser scanner directly. These sensors can be at-
tached in the same platform with TLS as a multi-sensor system or placed externally to track
the movement of a TLS. For instance, Paffenholz (2012) (see Chapter 5) proposed a multi-
sensor system consisting of a TLS, a GNSS-antenna as well as two inclinometers. An adaptive
extended Kalman filter is introduced, which allows the combination with the inclinometer data
and the determination of all desired transformation parameters. The position and orientation
information of the TLSs are simultaneously acquired without using extra control points. An
alternative approach is indirectly georeferencing, which is also named as object space-based
georeferencing. Traditionally, the TLS uses extra artificial targets which coordinated by other
geodetic approach, e.g. total station or GNSS systems. Specifically, at least three targets,
which serve as control points, are surveyed by TLS located in two view points. Thus, their
coordinates are know in both coordination system and the transformation parameters can be
estimated.

The registration process works mainly on the point clouds themselves rather than additional
measurements. The matching algorithms are always used to obtain the transformation pa-
rameters. The iterative closest point (ICP) algorithm is one of the most commonly used
method in registering two or more point clouds (Besl and McKay, 1992). It is characterized
by searching pairs of nearest points in the two point clouds and estimating the transformation
parameters based on the defined corresponding point pairs. Then, the transformation param-
eters are applied to the points of one set, and the procedure is iterated until convergence.
The classical ICP-based registration approach is improved by the later researchers (Wujanz
et al., 2014; Wang, 2013a; Gressin et al., 2013; Bae, 2009; Gruen and Akca, 2005; Grant, 2013,
Chapter 3 and Chapter 4). Besides, the intensity-based approach (Böhm and Becker, 2007)
and geometric feature-based approach, i.e. searching for corresponding edges (Lichtenstein
and Benning, 2009) or planes (Rietdorf, 2007, Chapter 4), serve as alternative strategies to
solve the registration problems, which are improved by the further investigations (Kang et al.,
2009; Weinmann and Jutzi, 2015; Ge and Wunderlich, 2016; Burger et al., 2018) and applied
in various projects (Dold and Brenner, 2008; Watanabe et al., 2016; Wujanz et al., 2018).

Point cloud segmentation In this step, the registered point clouds are grouped, commonly by
judging if they are on the same plane, sphere or cylinder, for further analysis (Vosselman and
Maas, 2010, p. 63). Here, only a very brief introduction is given in this subsection since it is
not the main scope of the thesis.

The Hough transform, which is a well-known method in detecting lines in a 2D image, is, e.g.
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extended to detect surface geometries in 3D point clouds (Vosselman, 1999). It is used to
detect planes (Vosselman et al., 2004), cylinders and spheres (Rabbani et al., 2006). Alter-
natively, the random sample consensus (RANSAC) algorithm (Fischler and Bolles, 1981) is
an easy-operating method in point cloud segmentation. It is initiated by a randomly picked
minimal point set to uniquely define a model, e.g. three points for a plane and four for a
sphere. Then, the rest points are searched for model compatible points. The RANSAC al-
gorithm is improved and applied in many further literatures (Barnea and Filin, 2013; Chen
et al., 2014).

Another alternative method is the surface growing approach. The surface growing approach
is similar with the region growing algorithm used in image processing. Specifically, after se-
lecting an ideal seed region which is characterized with smallest standard deviation in surface
estimation, the neighbor point of the seed region is one-by-one judged whether it fits to the
same surface. Once a set of coplanar points has been found, the seed surface is expanded by
adding this set of points.

Besides these geometry feature-based segmentation strategies, additional information, e.g.
intensity values, are in some cases used to segment the point clouds (Niemeyer et al., 2012;
Burger et al., 2018). Due to the combination of TLS with high-resolution digital cameras,
the colorimetric information from cameras can also serve as an additional criterion for seg-
mentation (Douillard et al., 2011).

2.3.4 General methodology in TLS-based deformation monitoring

As summarized by Ohlmann-Lauber and Schäfer (2011), deformation detection from scatter point
clouds can be based on different comparison methods: point-, point cloud-, surface-, geometry- and
parameter-based strategies.

Point-based strategy is a common approach to describe deformations captured by conventional
point-wise surveying techniques, for example, total station and GNSS. However, there are
seldom TLS data-based applications, since the finding of a reference point between two epochs
is challenging. As a compromise scheme, the local neighborhood points are used to estimate
a representative point as reference for comparison (Little, 2006). Another solution is to apply
a spherical target in scanning and extract the centers of the sphere as references (Ogundare,
2015).

Point cloud-based strategy is in most applications characterized by using an octree structure
which is often used to partition a 3D space by recursively subdividing it into eight octants.
Specifically, the registered point clouds of various epochs are subdivided into cubes with equal
size. The ICP algorithm is applied to determine the transformation parameters from stable
cubes and the deformation is defined by the coordinate difference of points involved in the
“homologous” cubes of various epochs (Teza et al., 2007; Wujanz, 2016, Chapter 4; Eling,
2009, pp. 96-98).

Surface-based strategy respectively cloud to mesh/model is to compare the point clouds with
the reference surface model consisting of point grids. The gridded point sets are compared to
generate a digital elevation model (DEM) for coordinate differences, which reduce the spatial
information from 3D to 2.5D (Mukupa et al., 2017). This procedure is commonly used in
commercial software for point cloud processing, since it is a efficient approach in producing
color coded inspection maps (Tsakiri et al., 2006; Lague et al., 2013).

Geometry-based strategy approximates the point clouds by analytic functions such as planes,
spheres, cylinders and the free-form curves or surfaces. The approximated models of different
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epochs are compared to detect the geometry changes (Vezočnik et al., 2009; Wang, 2013a; Bu-
reick et al., 2016a,b). Compared with the cloud to mesh/model approach, the geometry-based
strategy facilitates a higher precision through parameter estimation with large redundancy
without losing any spatial information.

Parameter-based strategy shares the same approximation approach with the geometry-based strat-
egy. However, in the parameter-based strategy, the deformation is characterized by comparing
the corresponding estimated parameters from the approximated analytic functions, e.g. ra-
dius, focal length of the rotational paraboloids (Holst et al., 2015), normal vector of planes
(Lindenbergh and Pfeifer, 2005), center point of circles (Schneider, 2006).

In this thesis, our focus lies on the geometry-based strategy, where the deformation is characterized
by comparing the continuous model functions from the scattered point samples so that continuous
differences between epochs can be obtained. The key point of the geometry-based strategy is to
approximate the scattered points by a mathematical model and, in most cases, the unknown pa-
rameters of the approximated model are estimated by a least-squares adjustment. Consequently,
we are devoted to increase the reliability of geometry-based deformation monitoring results by im-
proving two main points of the adjustment: on the one hand, trying to specify the stochastic model
of TLS measurements and statistically evaluating its performance; on the other hand, selecting a
proper parametric function as functional model by means of hypothesis testing.

As a summary, the procedure of TLS-based deformation monitoring introduced in this chapter is
depicted by the following flowchart diagram.

Figure 2.3: Flowchart of TLS-based deformation analysis.
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on a congruence based deformation analysis

After data acquisition and pre-processing, the subsequent step is to model the deformations. Ac-
cording to Heunecke et al. (2013, p. 78), the deformation can be modeled either descriptively or
causally. An extensive introduction of deformation modelling will be given in subsection 3.1. The
congruence model, as one of the descriptive models, is the most popular one in the geodetic field
since it purely focuses on the geometric state of the object in various epochs and the deformation
is described by coordinate changes. For this reason, the congruency model is also in the main focus
of this thesis. A vital assumption of the congruency model is that some portion of an observed
area remains geometrically stable, which is judged by statistical tests. The implementation of the
congruency test is described in subsection 3.2. It is noticeable that the results of the congruency
test are highly depending on the stochastic model. The influence of a simplified stochastic model
on the test result is analyzed in subsection 3.3.

3.1 Modelling the deformation

3.1.1 Conventional deformation model (Descriptive model)

Conventionally, the continuum object is characterized by discrete points in geodetic modelling,
thus, the movement of these points represents the deformation of the object. It is refereed to as
“congruency model” where only the geometry changes is modeled without explicitly considering
the time intervals between the epochs or the causes for the deformation.

The automatic measurement approaches felicitate the observation of the deformation process in
certain time intervals in order to properly model temporal changes of the deformation. It is re-
ferred to as “kinematic model” where the geometry changes of characteristic points are described
with time variable (Welsch and Heunecke, 2001).

Either the congruency model or kinematic model describe the deformation process as an phe-
nomenon without analyzing the potential causes. Thus, these two models are summarized as
“descriptive models” Heunecke et al. (2013, p. 78).

3.1.2 Advanced deformation model (Causal model)

For many interdisciplinary cooperation projects, the deformation need to be modeled regarding to
the causes, i.e. internal and external forces, instead of only being described in a phenomenological
manner as in the conventional deformation models. This kind of cause-response models are refereed
to as “advanced deformation models” or “causal models”, which are further classified into static
and dynamic models depending on the consideration of the time as variable.

For an object, if the functional relationship between stress, i.e. loads or forces, and geometry
changes, needs to be revealed, and meanwhile the object is sufficiently stable during the measure-
ment procedure, the “static model” can be applied. In the static models, the movements and
distortions of the object are considered as function of only the load but not the time (Welsch and
Heunecke, 2001). Static models are frequently applied, if the load-carrying capacity of structures
like bridges, pylons etc. have to be tested (Hesse et al., 2000).
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When the time is additionally considered as a variable into the load-deformation relationship, it
turns to be a “dynamic model”. The time-varying loads lead to the corresponding time-varying
geometry changes. The dynamic model is the most general and comprehensive modelling of defor-
mations where the movements and distortions of the object are considered as function of both load
and time.

The deformation models are summarized by Heunecke et al. (2013, p. 78) by Table 3.1.

Table 3.1: The estimation models for deformation measurements (Heunecke et al., 2013, p. 78)
Deformation

models
Congruence

model
Kinematic

model Static model Dynamic
model

Time Not explicitly
modelled

Movement as
function of time

Not explicitly
modelled

Movement as
function of

time and load
Load Not modelled Not modelled Distortion as

function of load

State of the
measured object

Sufficiently
stable Moved

Sufficiently
stable under

load

Moved under
load

3.2 Hypothesis test for congruency

In the traditional geodetic field, the focus of deformation monitoring lies on the detection of geom-
etry changes of an object, i.e. the coordinate variation of the characteristic points between the two
epochs. Hence, the congruency model, which is the most popular strategy, is exemplarily applied
in this dissertation. The strategy of congruency model is to statistically judge the identity of point
coordinates between two or more epochs. More specifically, we have for each epoch an observa-
tion vector l(1) and l(2) to be approximated by A(1)x(1) and A(2)x(2) separately. We assume the
corresponding random deviations e(1) and e(2) to be normally distributed with zero mean and the
corresponding VCMs are Σ(1)

ll and Σ(2)
ll . We assume that each random deviation of the first epoch

and their second epoch are uncorrelated. Thus, a linear GMM is obtained:[
l(1)

l(2)

]
=
[
A(1) 0

0 A(2)

] [
x(1)

x(2)

]
+
[
e(1)

e(2)

]
(3.1)

and

Σl(1),l(2) =

Σ(1)
ll 0

0 Σ(2)
ll

 = σ2
0

Q(1)
ll 0

0 Q(2)
ll

 = σ2
0

[
P(1) 0
0 P(2)

]−1

= σ2
0Pl(1),l(2) (3.2)

The hypotheses tests are in most cases formulated on the basis of x (x =
[
x(1) x(2)

]>
) when the

deformation is defined as the changes on the parameter level.

Given the matrix H =
[
−I I

]
, we define the null hypothesis H0 that no deformation occurred

based on the form of a general linear hypothesis:

H0 : Hx =
[
−I I

] [x(1)

x(2)

]
= 0 (3.3)
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we also formulate an alternative hypothesis by the following equation:

H1 : Hx =
[
−I I

] [x(1)

x(2)

]
6= 0 (3.4)

According to Pelzer (1971), the test statistics T follows a χ2
h distribution with h degrees of freedom

(h = rank(HΣx̂x̂H>)):

T = x̂>H>
(
HΣx̂x̂H>

)−1
Hx̂ ∼ χ2

h (3.5)

with

Σx̂x̂ =

[A(1) 0
0 A(2)

]>
Σ−1

l(1),l(2)

[
A(1) 0

0 A(2)

]−1

(3.6)

We obtain the test decision via the comparison of the numerical value of T with the quantile kχ
2
h

1−α
of the χ2

h distribution at the specified significance level α.

1. The congruence (or identity) assumption is plausible based on the present data in case of

T ≤ kχ
2
h

1−α

2. The congruence (or identity) assumption is untenable based on the present data in case of

T > k
χ2

h
1−α

In the aforementioned general form of a linear hypothesis test, the congruence between the estimated
unknown parameters x(1) and x(2) of two epochs are tested. However, in the geometry-based
deformation monitoring strategy which the thesis focus on, the deformation ∆ is always defined as
the difference of adjusted measurements

∆ = HAx =
[
−A(1) A(2)

] [x(1)

x(2)

]
(3.7)

Consequently, the congruency test should be accordingly reformulated. Specifically, we can write
(3.3) and (3.4) simpler as H0 : ∆ = 0 and H1 : ∆ 6= 0. The matrix H in the equations
(3.3)(3.4)(3.5) is replaced by HA =

[
−A(1) A(2)

]
. The replacement lead to a new statistic TA

following a χ2
hA

distribution with hA degrees of freedom (hA = rank(HAΣx̂x̂H>A))

TA = x̂>H>A
(
HAΣx̂x̂H>A

)−1
HAx̂ ∼ χ2

h (3.8)

The test statistic TA is compared with the quantile k
χ2

hA
1−α to obtain the conclusion that whether

there is significant deformation according to the adjusted measurements. For more details of the
reformulated congruency test the readers is referred to the attached Paper 1, section 2.2.2.
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3.3 Influence of simplified VCMs on the congruency test
In the normal GMM, the test for congruency is proofed as the UMPI test for discriminating between
the null hypothesis of zero deformation and its alternative hypothesis on condition of (cf. Kargoll,
2012, Chapter 3)

1. a known design matrix H (or HA) of full rank and

2. a known positive definite weight matrix P.

In practice, however, neither the design matrix nor the weight matrix, i.e. the stochastic char-
acteristics, are known exactly, and they need to be determined by experience or other testing
approaches. The functional model is in most cases determined through model selection approaches
based on information criterion or statistical tests. As another prerequisite of the UMPI property,
the stochastic model is even more challenging to be specified due to the limited knowledge on inter-
nal and external measurement uncertainties of TLS. The weight matrix is in most cases determined
according to experience or simply assumed as identity matrix. The misspecified stochastic model
theoretically weakens the power of the congruency test. This view is addressed in this thesis and
mainly presented in the attached Paper 1.

As initial investigation, the impact of neglecting the heteroscedasticity and mathematical corre-
lations of a VCM in the B-spline surface approximation (refer to chapter 5 for details) on the
congruency test is investigated based on Monte Carlo simulations. The procedures of this study
are illustrated by a flowchart diagram in Figure 3.1. Generally, four main steps are involved:

Data simulation Since it is challenging to obtain the exact VCM in practice, especially its co-
variance information, we created sample points from given mathematical reference surfaces.
Within the simulation, a noise vector with known VCM is added to each point cloud of an
epoch. The simulated point clouds are from different mathematic surfaces and are assumed
as belonging to two epochs, between which the geometry changes happened. In our study,
three pairs of point clouds are simulated by 10, 000 repetitions regarding to small (case I),
middle (case II) and large (case III) deformation magnitudes. These procedures are blocked
by red dot-dash lines in the flowchart diagram and more details are explained in Paper 1,
section 3.1.

B-spline surface approximation In order to guarantee the adequacy of functional models in ap-
proximating the simulated point clouds, the model selection procedure is employed for each
dataset of an epoch. The selected B-spline surfaces are applied to approximate points with
the reference VCM or two simplified ones, i.e. neglecting the mathematical correlation or as-
suming as a homoscedastic VCM (see Paper 1, section 3.2). These procedures are blocked by
green dot-dash lines in the flowchart diagram. For more details on B-spline model selection
and approximation methodology the reader is referred to Paper 1, section 2.1 and section
2.2.1.

Congruency test The least-squares adjustment results with reference or simplified VCMs are the
input parameters for the congruency tests, which are carried out for each stochastic model
with 10, 000 repetitions. The rejection rates of the null hypothesis in the congruency test
are employed to reflect the impact of unspecified VCMs on the power of the congruency test.
These procedures are blocked by yellow dot-dash lines in the flowchart diagram and more
details on the congruency test are presented Paper 1, section 2.2.2.

Analysis result According to the results, the rejection rates are not sensitive to the simplification
of the stochastic models in the larger deformation area with higher point precision, while
they are obviously influenced in the smaller deformation area with unfavorable geometries,
i.e. larger uncertainties. In order to offer some hints—whether the results of the congruency
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3.3 Influence of simplified VCMs on the congruency test

test are reliable when using homoscedastic VCM—for further analysis, we summarize the
rejection rates from the studied cases and use the following criterion: the ratio of estimated
differences to the relative standard deviations. When this ratio is larger than the threshold,
the congruency test results are not impacted by the simplification of VCMs (see Paper 1,
section 4.3). It is concluded that the simplification of the stochastic model has a significant
impact on the power of the congruency test, especially in the smaller deformation areas with
larger uncertainties. These procedures are blocked by gray dot-dash lines in the flowchart
diagram and for more details on the result analysis the reader is referred to Paper 1, section
3.4 and section 4.
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3 The influence of a simplified stochastic model on a congruence based deformation analysis

Figure 3.1: Flowchart of the study on the influence of the simplified stochastic models on the con-
gruency test
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4 On the stochasticity of TLS measurement

The strong significant influence of a misspecified stochastic model on the congruency test motivates
the further investigation on the stochasticity of TLS measurements. Many researchers devoted
efforts in specifying the stochastic models for TLS, among which the most important references for
the thesis are introduced in subsection 4.1. However, it is still challenging in specifying the VCM for
TLS measurements due to the limited knowledge on the internal structure of laser scanner as well
as the complex influence resources for reflector-less distance measurement systems. These problems
are summarized in subsection 4.2. Finally, our efforts are put on the specification of comprehensive
VCM and the statistical evaluation of the refined stochastic model in the context of a given dataset
(see subsection 4.3).

4.1 State of the art for the stochastic models of TLS measurements
In practice, the true values of observations, i.e. raw measurements and the corrections, are unknown.
Thus, the error which is defined as the difference between measurement and the truth is an idealized
concept and cannot be known exactly. Consequently, the term “uncertainty” is introduced to reflect
the lack of exact knowledge of the value of the measurand. For the evaluation of uncertainties
in measurements, GUM has been internationally accepted as the standard. GUM groups the
uncertainties according to evaluation method into Type A and Type B. Random and systematic
errors are both modeled and treated as random variables in the uncertainty propagation. Type
A components are determined by statistical analysis from repeated observations, whereas Type
B components are evaluated by other means such as experience, manufacturer’s specification and
calibration information. Both type A and type B uncertainties can have random and systematic
deviations determined by probabilistic approaches.

In most cases, the law of propagation of uncertainty (LOP) is used in linear and linearized models
to estimate the output uncertainty. Besides the normal distribution, GUM recommends further
types of distributions for the input quantities, e.g. rectangular distribution, triangular distribution
and trapezoidal distribution, which make a more exact description of the uncertainties. However, in
many cases the models are neither linear nor can be linearized using Taylor series expansions. Thus,
for the strongly nonlinear cases, the GUM framework will not be satisfied (Hennes, 2007). To solve
this problem, the extension of GUM (JCGM, 2008) recommends the propagation of uncertainties
using a probabilistic approach, e.g. Monte Carlo techniques. In this field, Koch (2008b) models
the uncertainties of independent measurements by Bayesian confidence intervals using Monte Carlo
simulation in the context of the extension of GUM. The approach was extended to correlated
measurements in the further literature (Koch, 2008a). Alternatively, fuzzy techniques are used to
model the uncertainties which are in many cases too optimistically evaluated by pure probabilistic
approaches (cf. Alkhatib et al. (2009)). The investigation on fuzzy techniques in the context
of GUM can be found in Mauris et al. (2001). Alkhatib et al. (2009) compared the uncertainty
modeling approach based on LOP, Monte Carlo and fuzzy techniques in a numerical example.

A novel approach in establishing stochastic models based on intensity values was proposed by
Wujanz et al. (2017). Since the intensity values, which are collected as extra information besides
Cartesian coordinates, reflect the effects that are caused by “acquisition configuration as well as
interdependencies between emitted signal and object surface”. They serve as an index of signal
strength which is highly related with the noise of a range-finder. The uncertainty of the range
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4 On the stochasticity of TLS measurement

is empirically modeled as a function of the intensity value, where the object-related influences on
the range measurements are involved. Similar work was carried out by Zámečníková et al. (2014),
where the distance uncertainty is modeled by a bivariate quadratic polynomial function of measured
distance and signal strength.

4.2 Challenge of specifying variance-covariance values
Although a number of references are focusing on the stochasticity of TLS measurements, it is still
challenging in specifying a comprehensive and sophisticated VCM. The key problems include:

• An accurate observation model including the raw observations and all the systematic errors,
which is necessary to propagate uncertainties, is absent. The uncertainties of output variables,
which are obtained either through the LOP or the Monte Carlo propagation approach, rely
on the function specified between output, i.e. Cartesian coordinates, and input, i.e. raw
observations and systematic errors. However, even if the existence of some influences is
validated by experiments, e.g. the object-related influences, the modeling of these effects still
needs more investigation. So that they can hardly be specified in the observation model.

• The correlation among TLS measurements is mostly unclear so that the covariance elements
in VCMs are always misspecified (Kauker et al., 2016). It is claimed by Lichti (2010) that
the estimates of systematic error parameters are hindered by high correlations between model
variables. The solution of the author is to de-correlate some variables through a special de-
sign of experiments. Alternatively, Kauker and Schwieger (2017) approximated the spatial
correlations of Cartesian coordinates by an exponential function related to the distances be-
tween points. A similar investigation was shown in Jurek et al. (2017), where the covariances
of range measurements are modeled as a function of the color noise ratio. However, the
correctness of covariance modeling needs further experimental investigations in the future.

• The statistical approaches in discriminating between candidate stochastic models are miss-
ing. Alkhatib and Kutterer (2013) validated the correctness of input stochasticity by simply
comparing the statistic parameters of output variables with real dataset, i.e. skewness and
kurtosis. The global test (Niemeier, 2008, pp. 167ff.), also known as the overall model test
(Teunissen, 2000), is always conducted, e.g. by Wujanz et al. (2017) and Jurek et al. (2017),
to judge if the chosen stochastic models in least-squares adjustment are appropriate. How-
ever, the global test (overall model test) only offers decision in an absolute way at a certain
type I error rate, while during the investigation of specifying VCM, we are always exposed to
the question which candidate model is more suitable for the given datasets.

4.3 Statistical evaluation of stochastic model
Although it is challenging to specify the VCM of TLS measurements, the significance of the correct
stochastic model in the deformation monitoring, here i.e. for the congruency test, motivates our
further investigation on this subject. In the subsequent study (Paper 2), we tried to consider all the
influence factors and established a diagonal heteroscedastic VCM for N independent measurements

Σ = diag(σ2
1, . . . , σ

2
N ) (4.1)

It is noticeable that, as an initial attempt in specifying the stochastic model, in this study the
correlation of measurements are not considered. Since the applied hypothesis tests are based on
the assumption of identical and independent variables, the correlation of measurements will be
considered in the further studies with considerable improvement of the testing procedures. In the
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comprehensive stochastic model, the intensity-based range uncertainties are involved so that the
work on specifying the object-related influences is economized. Other uncertainties related to the in-
strument and atmosphere are specified according to the manufacturer’s data sheet (Zoller+Fröhlich,
2007) as well as the previous investigations on TLS calibration (Gordon, 2008, Chapter 5; Schulz,
2008, Chapter 3; Neitzel, 2007) and Barrel-Sears formula (Barrell and Sears, 1939; Joeckel et al.,
2008; Borah and Voelz, 2007; Rüeger, 1990, Chapter 5). The reason for the relatively old refer-
ences lies on the limited investigations of the Zoller+Fröhlich IMAGER 5006 laser scanner. The
general procedures are the same for other instruments. The refined stochastic model is used in
approximating bridge measurements in a linear GMM, while the B-spline curve is employed as the
functional model. More details on the specification of the VCM and data approximation are given
in Paper 2, section 2-4.

Comparisons are made between the estimated B-spline curves using on the one hand a homoscedas-
tic VCM and on the other hand the refined VCM. To assess the statistical significance of the dif-
ferences displayed by the estimates for the two stochastic models, a nested model misspecification
test and a non-nested model selection test are developed, described and applied.

A nested test for heteroscedasticity The first testing approach addresses the question whether a
given data set provides sufficient evidence for rejecting the simple, homoscedastic structure Σ0
( Σ0 = σ2I) in favor of some heteroscedastic diagonal matrix Σ (4.1), which is reformulated
as

Σ = σ2I + γV, (4.2)

where σ2 is chosen to be the least variance within Σ and where V is a non-negative diagonal
matrix constituting the difference of corresponding variances Vi = σ2

i − σ2 (i = 1, 2, ..., N).
The model (4.2) represents a GMM with two overlapping variance components σ2 and γ
(Kargoll, 2012, p. 76). A test about the hypotheses

H0 : γ = 0 versus H1 : γ > 0 (4.3)

is carried out which give rise to two possible test decisions:

i. Σ0 is inadequate for the given dataset when the null hypothesis H0 is rejected;

ii. Σ0 is adequate for the given dataset when the alternative hypothesis H1 is rejected.

The test is most conveniently based on Rao’s Score statistic, which avoids computation of the
additional parameters γ. For more details about the test procedures the reader is referred to
Paper 2, section 5.1.

However, the nested test only answers the question whether we could use the homoscedastic
structure Σ0 in the given dataset, while the adequacy of the refined heteroscedastic stochastic
model is not evaluated. The discrimination between the two stochastic models will be done
by a non-nested test.

A non-nested discrimination test of stochastic models Since the heteroscedastic covariance ma-
trix Σ is fully specified, it is actually not necessary to use the overlapping model where the
null hypothesis is nested inside the alternative one. It could be processed as a model selec-
tion problem where (log-) likelihood ratio tests are commonly employed for comparing the
goodness of two models.

The simple model describes the observables by means of the log-likelihood function L0(x, σ2; l)
with unknown parameters θ0 = [x;σ2] (Θ0 = Rn+1×R+), and the refined model is based on
the log-likelihood function L1(x; l) with unknowns θ1 = x (Θ1 = Rn+1). Under the previous
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4 On the stochasticity of TLS measurement

assumptions, the logarithmized likelihood ratio

L0,1 = L0(x̂, σ̂2; l)− L1(x̃; l) (4.4)

can be used to test the adequacy of the simple model against the refined model (see the
equations (15) and (46) in Cox, 1961). Here, the maximum likelihood estimates x̂, σ̂2 and
x̃ may be obtained via least-squares adjustments. According to Cox (1961, sections 8 and
9), the quantity L0,1 approximately follows a normal distribution with expectation µθ̂0

and
standard deviation σθ̂0

if the homoscedastic model Σ0 is true, or with expectation µθ̃1
and

standard deviation σθ̃1
if the heteroscedastic model Σ is true.

Since the logarithm of the likelihood function is computed, which leads to a strong non-
linearity, unfortunately, the variances σθ̂0

and σθ̂1
can not be obtained by normal variance

propagation. We carried out Monte Carlo simulation to determine empirical arithmetic means
(µθ̂0

, µθ̃1
) and empirical standard deviations (σθ̂0

, σθ̃1
), similar as the approach used in

Williams (1970). More details are given in Paper 2, section 5.2, thus, there is no further
detailed description in this chapter. The two assumptions lead to two consecutive tests of the
hypotheses

H0 : the homoscedastic model Σ0 is true;
H1 : the heteroscedastic model Σ is true.

which give rise to four possible, mutually exclusive test decisions:
i. Σ0 is rejected and the Σ is not rejected, i.e. the specific heteroscedastic model is true

while homoscedastic model is not. Thus, the heteroscedastic model is sufficient for our
dataset;

ii. Σ is rejected and Σ0 is not rejected, i.e. the homoscedastic model is true while the
specific heteroscedastic model is not. Thus, the homoscedastic model is sufficient for our
dataset;

iii. Both Σ0 and Σ are rejected, i.e. neither the homoscedastic nor the specific heteroscedas-
tic model is sufficient. Thus, the stochastic modelling has to be further refined;

iv. Neither Σ0 nor Σ is rejected, i.e. both homoscedastic and the specific heteroscedastic
model are sufficient. Thus, there is no significant difference between the two stochastic
models and either of them can be selected for our dataset.

According to the test decisions in our application, the homoscedastic VCM should be replaced by
a heteroscedastic VCM in the direction of the suggested VCM. However, the tests also indicated
that our specified VCM is still inadequate in light of the given dataset and should therefore be
improved. That probably can be due to the misspecification of the variance values and neglecting
correlations of the measurements which lead to an unrealistic stochastic model in this regard.

The study presented the statistical approaches in evaluating stochastic models. The nested test
for heteroscedasticity is used to judge whether we can use the homoscedastic structure in the given
dataset, while the non-nested discrimination test serves as a model selection approach and is able
to answer the question that which candidate model is more suitable for the given datasets. It is a
systematic and mathematically sophisticated approach to select the stochastic models. The general
idea can be transformed to other applications in the future. However, the testing procedures are
based on the assumption that the measurements are independent and identically distributed, which
should be extended in the further study in accordance with the correlated measurements.
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5 Approximating the 3D point clouds with
B-spline models for deformation monitoring

As introduced in subsection 2.3.4, the point clouds are restructured in different ways according
to various deformation monitoring strategies. Among them, the geometry-based strategy is the
most popular one since it facilitates a higher precision through parameter estimation with large
redundancies. In this strategy, the point clouds are approximated by mathematical functions
for each epoch, whose changes serve as indicator for the object deformation. There are many
mathematical functions, e.g. in implicit, explicit, or parametric form. Parametric functions are
usually employed to fit point clouds in applications such as deformation monitoring and reverse
engineering. Different parametric models find their proper application in various projects which
are introduced in subsection 5.1. Among the parametric models, our focus lies in B-splines which
offer a great flexibility and can be used to fit nearly every object scanned with TLS. The procedure
of approximating point clouds by B-splines is introduced in subsection 5.2. Since the choice of
the model would definitely affect the power of congruency test (see subsection 3.3), we made
additional research on the parametric model selection approaches based on hypothesis tests which
are introduced in subsection 5.3. The performance of B-splines is compared with that of commonly
used polynomial models with similar coefficients. The results are explained and discussed in detail
in subsection 5.4.

5.1 State of the art on the approximation of 3D point clouds
In the field of engineering geodesy, there are plenty of references on the topic of 3D point cloud
approximation, from which some of the most related ones are introduced in this subsection. As
summarized by Wunderlich et al. (2016), the object is represented by various functional models
according to their geometry characteristics. In general, regular surfaces with defined boundaries
are approximated by polynomial functions with various degrees. While the irregular or higher
order surfaces which are common in real world applications are more often to be approximated
by free-form curves or radial basis functions. The selection of functional models also depends on
the further deformation analysis strategy, i.e. based on the segmentations or integral objects. For
instance, among the applications of analyzing deformation of tunnels, Walton et al. (2014) and
Delaloye (2012) represented the tunnel by a series of cross profiles approximated by ellipses, while
Chmelina et al. (2012) and Van Gosliga et al. (2006) approximated the measurements integrally by
a cylinder. Both the approximated ellipses and cylinder serve as the idealized models to express the
tunnels. Similar application is conducted by Eling (2009), in which the general structure of the dam
was parameterized by a quadratic, i.e. ellipsoid function. In the bridge deformation monitoring,
Erdélyi et al. (2017) and Kopačik et al. (2013) segmented the superstructure into square-shaped
elements, where planes are applied to approximate the points contained in an element. The feature
of the individual elements is represented by that of the central points; while Neuner et al. (2014)
approximated the point clouds obtained by TLS profile mode globally by free-form curves, i.e.
B-spline and Bézier. Similarly, Schill et al. (2019) applied B-spline curves in approximating the
measurements of profile scanner in the application of monitoring the noise barriers along railway
tracks. The free-form surfaces also find their additional application in modeling the cooling tower
(Ioannidis et al., 2006), a leaf surface (Dupuis and Kuhlmann, 2016) and a concrete shell (Schmitt
et al., 2019). The benefit of such a space-continuous modeling lies in the continuous representation
of deformation at any point of the superstructure (Neuner et al., 2016).
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5 Approximating the 3D point clouds with B-spline models for deformation monitoring

From the above introduced applications, it can be seen that polynomials and free-form curves or
surfaces are the most popular parametric models in deformation monitoring. The mathematical
basis from polynomial, Bézier, B-Spline functions to Non-uniform rational B-Splines (NURBS) is
described by Bureick et al. (2016a). It is pointed out by the authors that in addition to being
popular in automobile industry and a standard tool in computer aided geometric design, the free-
form curves and surfaces are increasingly used in geodesy fields due to their great flexibility to
approximate objects scanned with TLS. A lot of recent research regarding the parametrization of
the measurements (Harmening and Neuner, 2015) or determination of the optimal knot vector re-
garding the scattered point clouds (Bureick et al., 2016b) highlight the high interest of the geodetic
community in B-splines approximation.

When selecting the mathematical function for the object, it is, in most cases unclear, whether the
surface is smooth enough to be described by a simple model (e.g., as a low-order, global polynomial
surface) or not. This is especially in the cases of deformation monitoring where local geome-
try changes might happen. This motivates the study on the model selection approaches in order
to select the most parsimonious, yet sufficiently accurate and statistically reasonable, parametric
description of the structure based on TLS measurements. Generally speaking, the model selec-
tion methodology can be divided into two main paradigms: information-theoretic approaches and
more traditional approaches based upon hypothesis testing (Lewis et al., 2011). Two well-known
information-theoretic approaches are the AIC and BIC which are comprehensively explained and
compared by Burnham and Anderson (2004). Harmening and Neuner (2016, 2017) investigated
statistical methods based on information criteria and statistical learning theory for selecting the
optimal number of control points within B-spline surface estimation. Another possibility is to
compare the (log-)likelihoods of competing models directly by means of the general testing prin-
ciple by Cox (1961) and Vuong (1989). Such hypothesis tests offer the advantage that significant
probabilistic differences between models can be detected, whose information is not provided by the
previously mentioned methods.

5.2 B-spline approximation in a linear Gauss-Markov model
Since the B-splines are increasingly applied in deformation monitoring due to the flexibility in mod-
eling the local geometry changes, the procedures of B-spline surface approximation are introduced
in this subsection.

The mathematical description of a B-spline surface point
[
Xk Yk Zk

]>
(k = 1, 2, ...,K) is as

follows[
Xk Yk Zk

]>
= S(ūk, v̄k) =

n∑
i=0

m∑
j=0

Ni,p(ūk)Nj,q(v̄k)Ci,j (5.1)

here ū = {ūk} is the location parameter vector in the u-direction and v̄ = {v̄k} is the location
parameter vector in the v-direction which is perpendicular to the u-direction. The surface point is
obtained by the totalised linear combinations of the basis function Ni,p(ūk), Nj,q(v̄k) and control
points Ci,j =

[
CXi,j CYi,j CZi,j

]>
. The control points are located at the mutually perpendicular

directions, i.e. u- and v-directions, with the number of (n+1) and (m+1) respectively. The control
points, in most cases, serve as unknown parameters x which are estimated by means of a linear
GMM.

The B-spline surface approximation involves three main steps, as summarized by Bureick et al.
(2016a):

1. Parametrization of the measurements located in the u- and v directions into location param-
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eter vectors ū and v̄.

2. Determination of the knot vectors U and V in the u- and v-direction.

3. Estimation of the (n+ 1)× (m+ 1) control points by means of a linear GMM: l + v = Ax.

The location parameters and knot vectors of step 1 and 2 are used for the derivation of the basis
functions Ni,p, Nj,q. The corresponding information is summarized into a design matrix A for the
final estimation step, i.e. the estimation of the positions of the (n+ 1)× (m+ 1) control points by
least-square adjustment, where v denotes the vector of residuals regarding the observations l. The
steps of B-spline surface approximation are summarized by the following flowchart diagram. More
details are given in the attached Paper 3, section 2.2.

Figure 5.1: Approximation of a B-spline surface in a linear GMM.

On the B-spline surface approximation procedure, there are further explanations on the following
three points that help to understand the attached 4 papers in more detail:

• The selection of the parameterization method highly depends on the characteristics of the
measurements. If the point clouds represented as a grid structure with s rows and t columns,
the points on each row can be parameterized with respect to the u-direction while that on each
column being parameterized with respect to the v-direction. The parameterization approaches
in this case are analogous to that used in B-spline curve parameterization, e.g. equally spaced,
chord length and centripetal method (Piegl and Tiller, 2012, p. 365). Compared with the
grid data, the parameterization of unorganized point clouds is much more complex. In this
case, the Coons patch is a common approach which is characterized by setting up the patch
network with boundary points and projecting the measured points on the approximated base
surface to find the parameters. Since it is beyond the scope of this thesis, the reader is referred
to Ma and Kruth (1995) and Harmening and Neuner (2015).
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• In order to simplify the parameterization procedure, we assume that the measurements in
our numerical examples have the grid structure. In Paper 1, the measurements are simulated
based on the grid points while in Paper 3 the unorganized point clouds are resampled as
grid structure for the approximation procedure. The chord length approach is applied in
parameterizing the measurements with respect to each row and column, since it is “the most
widely used method and generally adequate” (Piegl and Tiller, 2012, p. 365). Alternatively,
according to the same reference, the variables can be parametrized by either equal space
or centripetal method. The selection of the parameterization method, which may lead to
different knot vectors and further influence on the estimation of control points, depends on
the homogeneity and the existence of sharp turns in the measurements. Here, taking the
datasets of Paper 1 (epoch 1) and Paper 3 (segment I) as two examples, the differences of
the control points and B-spline surface points caused by using chord length and equal space
parameterization method are shown in the following Figure 5.2.

Figure 5.2: The differences of control points (upper) and surface points (lower) caused by applying
the two parameterization methods. (a)(c): dataset of Paper 1 (epoch 1); (b)(d): dataset
of Paper 3 (segment I).

It is indicated by the figure that this kind of control point position differences of dataset 1 are
ranging from 10−8 m to 10−5 m, while that of dataset 2 are ranging from 10−4 m to 10−3 m.
The influences of applying the two parameterization methods on the surface point estimation
are at the similar levels as that on the control points. Since the X- and Y -coordinates of
the two datasets are evenly distributed as grid structure, the influence of parameterization
method are mainly caused by the change of Z-coordinates, i.e. the area of yellow points is
corresponding to a larger partial derivative with respective to the Z-coordinates. However,
the influences of the different parameterization methods on the a posteriori variance factor of
approximated B-spline surfaces are not significant (see Table 5.1), so that, in both datasets,
the model selection results are identical while applying different parameterization methods.
The relatively strong influence on dataset 2, compared with dataset 1, is due to the drastic
changes of Z-coordinates within a relatively small area.
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Table 5.1: Comparison of the a posteriori variance factor of approximated B-spline surfaces using
different parameterization method

Parameterization
method

a posteriori variance factor
Dataset of Paper 1 (epoch 1) Dataset of Paper 3 (segment I)

Chord length 1.04× 10−6 8.07× 10−7

Equal space 1.05× 10−6 5.31× 10−7

• The control points are estimated by means of a linear GMM under the assumption that
the parameter vectors ū and v̄ are error-free. However, in most cases, the determination
of the parameters depends on the location of measurements so that the parameter vectors
are subject to random errors. Considering the measurement uncertainties, a comprehensive
errors-in-variables (EIV) model should be set up and the unknown parameters are estimated
through a Gauss-Helmert model (GHM) instead of linear GMM. In the field of approximating
the Spline curves with EIV model and a total least squares solution, interested reader is
referred to Borges and Pastva (2002) and Neitzel et al. (2019).

5.3 Model selection methodology based on hypothesis testing
As summarized by Lewis et al. (2011), the model selection methodology can be divided into
information-theoretic and hypotheses test-based approaches. The main difference between the
two is that the former compare sets of models and each model is treated as an equivalent candi-
date, whereas the later discriminate pairs of models by assuming the null model is valid unless the
data shows there is significant evidence to reject it in favor of the alternative model. There are
ongoing debates on the merits and drawbacks of the two methodologies (Burnham and Anderson,
2004; Stephens et al., 2005). One of the argued drawback of hypotheses test-based approaches is
that they are only suitable for discriminating the nested models, i.e. one model is a special case
of another one. On this subject, Cox (1961) modified the likelihood ratio tests, thus, they can be
applied to non-nested model comparisons. The Cox’s test is improved by Williams (1970) based
on the use of Monte Carlo simulation, which is more straightforward to implement. Alternatively
to the standard likelihood ratio test, Vuong (1989) provides a non-nested hypothesis test based on
the Kullback-Leibler information criterion (KLIC) which measure the closeness of two models.

In the parametric model selection process, the two non-nested hypothesis tests, i.e. simulation-
based Cox’s test and Vuong’s test, are employed to discriminate between the polynomial and
B-spline models in paper 3. The most parsimonious, yet sufficiently accurate parametric model is
selected through the testing procedure. Since the simulation-based Cox’s test is explained in the
subsection 4.3 for the application of discriminating between two stochastic models, we will not re-
peat that but briefly introduce the testing procedure of Vuong’s non-nested test in this subsection.

The Vuong’s test is based on the KLIC which measure the closeness of two models and uses the
likelihood-ratio based statistics to test the null hypothesis that the competing models are equally
close to the true data against the alternative hypothesis that one model is closer (Vuong, 1989).
Specifically, the two competing models are given as Fθ = {f(l; θ); θ ∈ Θ} and Gγ = {g(l; γ); γ ∈
Γ }, where l denote observations and θ, γ are the relative unknown parameters. Specifically in our
case, l are the acquired 3D points while θ and γ are parameters for the competing models, i.e.
control points of the B-spline model, coefficients of the polynomial model and their respective a
posteriori variance factors. According to Vuong (1989), the two models’ Kullback-Leibler distances
from the true density h0(l) are E0[ln h0(l)]−E0[ln f(l; θ∗)] and E0[ln h0(l)]−E0[ln g(l; γ∗)] respec-
tively, where E0 denote the expectation under the true model and θ∗, γ∗ are the pseudo-true value
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of θ, γ. It is clear that the model with a minimum KLIC value is closer to the truth, which is
however hard to quantify. Thus, an equivalent selection criterion can be based on the quantities
E0[ln f(l; θ∗)] and E0[ln g(l; γ∗)], the better model being the one with larger quantity.

There are three possible cases when comparing the competing models with each other and we
propose the hypothesis as follows:

H0 : The two models have equal expectation values so that they are equivalent;

Hf : E0[ln f(l; θ∗)] > E0[ln g(l; γ∗)] meaning Fθ is the better model;

Hg : E0[ln f(l; θ∗)] < E0[ln g(l; γ∗)] meaning Gγ is the better model.

Since the quantity E0[ln f(l; θ∗)] − E0[ln g(l; γ∗)] is still hard to quantify, Vuong consistently es-
timates it by (1/n) times the log-likelihood ratio. Thus, similar to Cox’s test, the statistic of
Vuong’s test is also based on the log-likelihood ratio (4.4). Vuong’s test is potentially sensitive to
the number of estimated parameters on condition that the log-likelihood ratio L0,1 is adjusted by
a correction factor K.

L̃0,1 ≡ L0,1 −K (5.2)

Vuong (1989) suggests that K corresponds to the penalty term of AIC or BIC. According to the
former K = p0 − p1 and according to latter K = (p0/2) lnN − (p1/2) lnN , where p0 and p1 are
the numbers of parameters in the competing models. The BIC generally penalizes free parameters
more strongly than AIC. Here, we prefer the BIC correction factor in order to avoid an over-
fitting problem. The adjusted likelihood ratio is further normalized and assumed to converge,
asymptotically to a standard normal distribution. More details on Vuong’s non-nested hypothesis
test are given in Paper 3, section 2.3 so that there is no further detailed description in this chapter.

5.4 Comparison between B-splines and polynomial approximation
As already introduced in subsection 5.1, the parametric models are usually employed in approxi-
mating point clouds. Among the parametric models, polynomials and B-splines are widely applied
in various projects. In the Paper 3 and Paper 4, we focus on discriminating between polynomial
and B-spline models in two case studies. It is notable that the general strategy is also possible for
the comparison of other surfaces. In general, polynomials are used to model the regular geometries
or segmentations, since the complex geometry which need higher degree polynomial functions may
lead to large computation burden as well as numerical instability of polynomials. On contrast,
the B-splines are characterized as piecewise polynomial which can approximate complex geometry
section by section with a lower degree. In order to give a clear explanation, the creation of a
B-spline curve is illustrated by the following figures. The measurements is shown in Figure 5.3 as
gray points which are approximated by a cubic B-spline curve (red solid and dashed line) with 11
control points (yellow). Figure 5.4 shows the piecewise basis functions by alternating the solid and
dashed line corresponding to the knot spans generated by the internal knot points Ui (in our ex-
ample i = 5, 6, ..., 11). The piecewise basis functions are linearly combined with the control points
and the sum of the results lead to a piecewise polynomial, which is a B-spline curve.

In order to compare the performance of B-splines and polynomials in approximating point clouds,
we carried out two case studies. The data used in the two numerical examples are the measure-
ments of a Zoller+Fröhlich IMAGER 5006 laser scanner for a concrete arch structure with a length
of about 2 m and a thickness of 0.1 m (Figure 5.5). In the experiment, loads were periodically
placed on top of the arch’s surface to probe the load-caused deformation of the arch structure.
After pre-processing of the measurements, two top surface segments and boundary edge of the arch
are extracted from the point cloud, which are used in the numerical examples (Figure 5.6).
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Figure 5.3: Cubic B-spline curve using the basis function depicted in Figure 5.4.

Figure 5.4: Cubic basis functions corresponding to the knot spans.

Case study I: comparison of approximated B-spline and polynomial curves In the first step, the
extracted boundary edge points are approximated globally by polynomial and B-spline curves
with similar model complexity, i.e. number of parameters. The a posteriori variance factor
serves as an index of fitting precision. The results indicate that the B-spline curve has a more
satisfying fitting precision due to the reason that the a posteriori variance is 90% smaller
than that of the polynomial curve. As a second step, the boundary points were segmented
and approximated locally. The fitting precision improved by B-spline is not as much as that
of polynomial curves.

Since the B-spline curve is a piecewise polynomial, it has a great flexibility in reflecting
detailed geometries even in global fitting. A smaller a posteriori variance is within the ex-
pectation in this numerical example. Although several polynomial curves can also be used in
piecewise-approximation of the boundary edge, it is no longer a continuous curve as B-spline
curves. Only the combination of individual polynomials by restrictions in the transition re-
gion (e.g. some functional vaules or inclinations) can form a continuous curve which is then
a B-spline curve. More details related to the case study I are given in Paper 4.

Case study II: Model selection between B-spline and polynomial surfaces In this case, two seg-
ments of the top surface measurements (Figure 5.6) are extracted and each segment is ap-
proximated by both polynomial and B-spline surfaces for comparison. The simulation-based
Cox’s test and Vuong’s non-nested test are employed to select the better model. It is no-
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5 Approximating the 3D point clouds with B-spline models for deformation monitoring

Figure 5.5: The measured concrete arch structure under load.

Figure 5.6: The boundary edge for case I (yellow) and two top surface segments for case II (within
the red boundary) shown by the software CloudCompare.

ticeable that in this numerical example the load is placed on top of the arch’s surface and
the geometry changes happens mainly on the vertical direction, hence, our focus lies on the
changes of Z-coordinates. In order to define the reference points of different epochs, also
to regularize the point clouds for further B-spline surface approximation, we resampled the
high-density point clouds based on a grid structure of XOY plane, i.e. calculating the plane
distance dp−g (dp−g =

√
4x2

p−g +4y2
p−g) from each measured points to the grid points and

the closest ones are selected. Due to the resampling procedure, we assume the X- and Y -
coordinates of selected points as error-free. Then, the resampled points are approximated by
either polynomial or B-spline surfaces in a linear GMM.

According to the testing results, for segment I, the B-spline surface has better performance
than polynomials with same number of parameters. The higher degree polynomials lead to a
unstable normal equations which prohibit the approximated polynomials surface to reflect de-
tailed geometrical changes of the target segment. Consequently, B-splines are recommended.
However, the model selection results of segment II are quite different from the previous one.
The data gap leads to numerical instabilities in determining the knot vector and therefore
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resulting the oscillation effects of B-splines. It is noticeable that the conclusions are draw
from this case study. That can be various when using other datasets. However, the general
model selection strategy is still applicable for other cases. More details related to the case
study II are given in Paper 3.

It can be concluded from the two case studies I and II, that the B-splines, as piecewise polynomials,
are powerful in approximating geometry details and offers a continuous information for the objects.
However, the traditional knot vector determination procedure is sensitive to data gaps which also
needs more study on the robust and reliable parameter estimation approaches.

Our focus lies not only on the discrimination of B-spline and polynomial models in the given
numerical example, but also presenting two of the hypotheses-based approaches for model selection
problem, which can be used in further studies. The simulation-based Cox’s test and Vuong’s non-
nested test are developed and applied in the case study II to solve the model selection problems.
The results of the hypothesis tests are compared with that of information-theoretic approaches, i.e.
AIC and BIC (see Paper 3, section 4). According to the comparison, we found that the decision
of Vuong’s non-nested testis is consistent with that of BIC. Actually, there are close connections
between AIC, BIC, the simulation-based Cox’s likelihood ratio test and Vuong’s test, since the
maximum value of likelihood function for candidate model are involved in all of the four strategies.
However, due to no penalized terms, the parsimony of models is neglected in simulation-based
Cox’s testing procedure, i.e. the more complex and accurate models are always selected. Thus, this
approach is suitable to discriminate models with similar parameters. It can be concluded from the
comparison of the model selection approaches that the results obtained via hypotheses tests can,
in certain circumstances and when interpreted carefully, assist in the interpretation of the results
obtained using information criterion.
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6 Conclusion and Outlook
In this thesis, the key problems of data analysis in TLS-based deformation monitoring are investi-
gated. The characteristics of high precision and spatial resolution in capturing 3D point clouds make
the TLS become powerful instruments for data collection. However, due to the non-reproducible
scanning measurements, it is challenging to find the reference points between two epochs. That fa-
cilitates many strategies for TLS-based deformation monitoring, among which the geometry-based
method is the most popular one. The key procedure in this strategy is to approximate the point
clouds by analytic functions. The geometry changes of objects are detected by comparing the ap-
proximated models of various epochs. If the deformation is purely described by geometry changes
of the object, regardless of the causes and time, the congruence model, as one of the the most
popular descriptive models in geodetic field, are usually employed in this case. The key point in
this model is to decide whether geometry changes occur between two or more measuring epochs,
where the congruency tests proposed by Pelzer (1971) are usually employed to judge this kind of
congruency problem.

The thesis carries out the investigation in the above background. Specifically, the contributions
can be summarized as the following four points.

1. Studying the influence of a simplified stochastic model, i.e. neglecting the mathematical
correlations and assuming homoscedasticity, on the results of a congruency test. The research,
on the one hand, generate an indication which can be used to judge whether the result of a
congruency test is free of influence by the simplified VCMs and is able to offer the reliable
testing results in deformation analysis. On the other hand, the risk of the simplification of the
stochastic models on congruency tests is highlighted, especially in the smaller deformation
area with larger uncertainties.

2. Developing and applying two innovative statistical approaches in discriminating between ho-
moscedastic and heteroscedastic stochastic models. The first procedure is based on Rao’s
score statistic and nests the homoscedastic model as a special case of the fully specified het-
eroscedastic model. It addresses the question whether the homoscedastic structure should be
rejected in the context of the given dataset. The second procedure is based on the Cox’s non-
nested likelihood ratio test, in which the homoscedastic and the fully specified heteroscedastic
model are tested independently against each other. The two statistical approaches can be
used to validate further attempts at improving the stochastic model for TLS measurements.

3. Applying two hypotheses-based approaches, i.e. simulation-based Cox’s test and Vuong’s
non-nested test, for functional model selection and comparison of the results with that
of information-theoretic approaches, i.e. AIC and BIC. Among the four procedures, the
simulation-based Cox’s test is more suitable to discriminate the candidate models with simi-
lar parameters due to the absence of a penalty term related to model parsimony. The Vuong’s
non-nested test can serve as an alternative approach to assist in the interpretation of the re-
sults obtained using information criterion in the further studies.

4. The superiority and limitation of B-spline models are revealed in the numerical examples.
The B-splines, as piecewise polynomials, offer a great flexibility in approximating geometry
details with continuous information for the objects. However, the traditional knot vector
determination procedure is sensitive to data gaps which would lead to a numerical instability
problem.
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The research mainly highlighted the importance of specified stochastic models and adequate func-
tional models in geometry-based deformation monitoring and proposed some alternative solutions
based on hypothesis testing procedure for model selection problem. However, there are still open
questions and recommendations arising from this work which should be pursued in the further
research.

1. The extended uncertainty budget in specifying the heteroscedastic VCM (see Paper 2) is based
on the previous literatures, which may be not consistent with the properties of our specific
TLS. That leads to the misspecification of variance factors. In addition, the correlations of
the influences and the measurements is not considered. Therefore, the specification of VCM
also needs more further experimental investigations in the future.

2. The hypothesis testing procedures are mostly based on the assumption that the measurements
are independent and identically distributed, which should be extended in the further study
in accordance with the correlated measurements.

3. The B-splines approximated by means of traditional procedures (Piegl and Tiller, 2012) might
be sensitive to data gaps, which can be found in our numerical example (subsection 5.4, case
II). Therefore, the optimization of B-splines by robust and reliable parameter estimation
approaches needs more investigations.

4. The linear GMM is applied in the surface and curve approximation under the assumption
that the parameter vectors are error-free, which is actually not the truth. A comprehensive
model, e.g. EIV model, should be set up to solve this problem in the further studies.

5. The congruency deformation model is only exemplarily used in our research. The general
idea and conclusion of the thesis can be also transferred to other deformation models in the
future work.
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The first paper aims at analyzing the impact of simplified VCMs, i.e. neglecting the mathematical
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are made between the estimated B-spline curves using on the one hand a homoscedastic VCM and
on the other hand the refined VCM. To assess the statistical significance of the differences dis-
played by the estimates for the two stochastic models, a nested model misspecification test and a
non-nested model selection test are described and applied. In our study, the test decisions indicate
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rate, parametric description of an object based on TLS measurements, whose model is applied to
geometry-based deformation analysis. Beyond standard model selection procedures based on infor-
mation criteria, i.e. AIC and BIC, we applied two hypotheses-based approaches, i.e. simulation-
based Cox’s test and Vuong’s non-nested test, which are instantiated in numerical examples to
discriminate statistically between the widely used polynomial and B-spline surfaces as models for
TLS point clouds. Finally, the results of hypotheses-based approaches are compared with that of
AIC and BIC. It is indicated by the results that the hypotheses test-based approaches can serve
as an alternative approach to assist the interpretation of the decisions from information-theoretic
approaches. In addition, the superiority and limitation of B-spline and polynomial models are
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the arch boundary edge. The edge points are extracted through the window-neighborhood method
and are approximated by B-spline and polynomial curves with similar parameters. The a posteri-
ori standard deviation is selected as an indicator to reflect the performance of the approximations.
According to the result, the B-spline curve has a more satisfying fitting precision due to the reason
that the a posteriori variance is 90% smaller than that of the polynomial curve. However, in the
local approximation, the polynomial fitting precision is much improved. The fitting precision im-
proved by B-spline is not as much as that of polynomial curves. This paper serves as an additional
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Abstract: Terrestrial laser scanners (TLS) are powerful in-
struments that can be employed for deformation monitor-
ing due to their high precision and spatial resolution in
capturing 3D point clouds. Deformation detections from
scatter point clouds can be based on different compari-
son methods, among which the geometry-based method
is one of the most popular. Compared with approximating
surfaceswith predetermined geometric primitives, such as
plane or sphere, the B-splines surface approximation of-
fers a great flexibility and can be used to fit nearly every
object scanned with TLS. However, a variance-covariance
matrix (VCM) of the observations involved in approximat-
ing the scattered points to B-spline surfaces impact the
results of a congruency test, which is the uniformly most
powerful invariant (UMPI) test for discriminating between
the null hypothesis of zero deformation and its alternative
hypotheses. Consequently, simplified stochastic models
mayweaken theUMPIproperty. BasedonMonteCarlo sim-
ulations, the impact of the heteroscedasticity and mathe-
matical correlations often neglected in B-splines approx-
imation are investigated. These correlations are specific
in approximating TLS measurements when the raw mea-
surements are transformed intoCartesian coordinates. The
rates of rejecting the null hypothesis in a congruency test
is employed to reflect the impact of unspecified VCMs on
the power of the congruency test. The rejection rates are
not sensitive to the simplification of the stochastic mod-
els, in the larger deformation area with higher point accu-
racy,while they are obviously influenced in the smaller de-
formation area with unfavourable geometries, i. e. larger
uncertainties. A threshold ratio of estimated differences
to the relative standard deviation highlights whereas the
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results of congruency test are reliable when using simpli-
fied VCMs. It is concluded that the simplification of the
stochastic model has a significant impact on the power of
the congruency test, especially in the smaller deformation
area with larger uncertainties.

Keywords: Terrestrial laser scanning, B-spline approxima-
tion, variance-covariance matrix, deformation analysis,
congruency test

1 Introduction

Deformation monitoring of structures is a common appli-
cation and one of the major tasks of engineering survey-
ing. Terrestrial laser scanning (TLS) has become a power-
ful method among all the data acquisition approaches for
deformation detection due to its high precision and spatial
resolution in capturing 3Dpoint clouds. As summarized by
Ohlmann-Lauber and Schäfer [35], deformation detection
from scatter point clouds can be based on different com-
parisonmethods: point-, point cloud-, surface-, geometry-
and parameter-based strategies. The point-based strategy
is a common approach to describe deformations captured
by conventional point-wise surveying techniques, for ex-
ample, total station and the Global Navigation Satellite
System. However, there are seldom TLS data-based appli-
cations, since the finding of a reference point between two
epochs may be challenging. As an alternative, the point
cloud-based strategies are characterized by using octree
structure which is often used to partition a 3D space by
recursively subdividing it into eight octants. Specifically,
the registered point clouds of various epochs are subdi-
vided into cubeswith equal size and the deformation is de-
fined by coordinates transformation of points involved in
the “homologous” cubes of various epochs [8, 29, 41]. The
surface-based strategies allow themodelling of one epoch
of the point clouds by a surface consisting of meshes. Con-
sequently, the deformation is defined as the distance be-
tween points of the second epoch to the relative meshes
[25, 42]. The geometry-based strategy, instead of represent-
ing the point clouds bymeshes, approximates them by an-
alytic functions, such as planes, spheres, cylinders and
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the free-form curves or surfaces and compares the approx-
imated analytic functions of different epochs [4, 5, 44, 45,
50]. The geometry-based method shares the same approx-
imations approach with the parameter-based strategy. In
the latter, however, the deformation is characterized by
comparing the corresponding estimated parameters from
the approximated analytic functions [13, 27, 38].

In this contribution, our focus lays on the geometry-
based methods. The deformation is characterized by com-
paring the continuous model functions from the scat-
ter point samples so that continuous differences between
epochs can be obtained. In most cases, the unknown pa-
rameters of the approximatedmodel are estimated by least
squares (LS) adjustment, i. e. the zero-mean residuals ob-
tained by subtracting the overdetermined measurements
and their approximation are minimized in the LS sense,
in the metric of the variance–covariance matrix (VCM) of
the observations [24]. Consequently, the trustworthiness
of the adjusted results depends on both the validity of
the selected functional model, i. e. the relationship be-
tween the parameters to be estimated and the observa-
tions, and the stochastic model, i. e. the description of a
realistic VCM. Free-form curves and surfaces, such as B-
splines, among parametric functions are a powerful tool
to obtain an analytical model of the object. In addition to
being popular in automobile industry and a standard tool
in computer aided geometric design [7, 11], B-splines are
increasingly used in geodesy fields due to their great flexi-
bility to approximate objects scanned with TLS. The draw-
back of using a Gauss–Helmert model to fit an object with
restrictive standard surfaces, such as a plane or cylinder,
can be overcome. Interested readers could refer to Bureick
et al. [4] for a comparison of the most popular paramet-
ric surfaces in geodetic applications from polynomial to
non-uniform rational B-splines. A lot of recent research re-
garding the parametrization of the surface [10] or determi-
nation of the optimal knot vector regarding the scattered
point clouds [5] highlight the high interest of the geode-
tic community in B-splines approximation. Improving the
functional model is of main importance as the major ap-
plication is to quantify and analyse deformations. Exem-
plarily, Koch [23] made use of the B-spline surface in de-
formation analysis by modelling a plastic sheet under in-
creasingpressure.Neuner et al. [32] detected thedeflection
of a bridge by TLS in a profile mode. The point profiles ob-
tainedwere approximated by B-spline curves. Xu et al. [49]
offered a robust and time-efficient solution to approximate
the point cloud of a tunnel with B-spline curves. Conse-
quently, improvements regarding the functional model re-
main indispensable if not vital to avoid wrong or inaccu-
rate modelization of deformations.

However, the second pillar of the LS adjustment
should not be underestimated: the stochastic model can
strongly influence the efficiency of the parameters esti-
mated; here, the control points of the B-splines surface.
Earlier literature related to geodetic fields has already dis-
cussed the effect of an incorrect stochastic model on ad-
justed results [9, 28, 46]. Indeed, in addition to biasness
of the a posteriori variance factor [48], the LS solution be-
come less efficient when the VCM involved is misspeci-
fied [19]. The description of uncertainties often relies on
the “Guide to the Expression of Uncertainty in Measure-
ment” [14]. In addition to the classical law of error prop-
agation, the uncertainties can be propagated via Monte
Carlo approach [21, 22] or fuzzy techniques [2]. Alterna-
tively, empirical methods are used to describe the stochas-
ticity of TLS measurements. Wujanz et al. [47] developed
an intensity-based stochastic model which makes use of
the intensity values to account for the impact of sur-
face and the acquisition configuration of the uncertain-
ties. Kauker and Schwieger [17] generated a synthetic VCM
by integrating the functional correlated, stochastic corre-
lated and non-correlated errors. In evaluating the stochas-
ticmodel, Zhao et al. [50] used simulation-basedCox’s and
Rao’s score tests to discriminate between homoscedas-
tic and heteroscedastic VCMs. Jurek et al. [15] evaluated
the impact of spatial correlations, with various correlation
lengths and colour noise ratios, on the surface estimation
by global and parameter tests.

The key point in deformation analysis is to decide
whether a deformation occurs between two or more mea-
suring epochs. In otherwords, the congruency problem for
these repeatedly measured epochs has to be solved. The
congruency tests proposed by Pelzer [36] are usually ap-
plied to judge the possible changes in the geometry, which
has proved to be the most powerful test in Gauss–Markov
models with normal distributed variants and specified
VCM [16]. Niemeier [33] presented a rigorousmathematical
procedure for this congruency analysis of multiple mea-
sured networks. Neumann and Kutterer [30, 31] consid-
ered the remaining systematic deviations in the stochastic
model, which is involved in the congruency test, by fuzzy
intervals. Velsink [43] improved the iterative procedure by
non-iterative hypothesis tests, where all the subsets of the
non-congruent points considered were tested. Lehmann
and Lösler [26] interpreted the detection of unstable points
within the congruence analysis as a model selection prob-
lem, where comparisons with the classic information cri-
terion approachweremade. The congruency test is further
widely applied in global positioning system (GPS) defor-
mation networks [6, 39, 40]. Baselga et al. [3] searched for
a maximum number of stable points by means of a con-
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gruency test in a relative control networks for deformation
determination. However, the test statistic of the congru-
ency test is not only based on the detected difference be-
tween the points’ coordinates at the two epochs, but also
depends on their stochastic characteristics. Consequently,
anymisspecification of the VCM leads to an untrustworthy
test result [12].

When approximating the point clouds by B-splines
and using the surface points’ differences in a congruency
test, accounting for mathematical correlations of Carte-
sian coordinates in the stochastic model is unavoidable,
in addition to an accurate description of the variance by
taking heteroscedasticity of the raw measurements into
account. In this contribution, a Monte Carlo simulation-
based study is carried out to analyze the impact of a
simplified VCM. More specifically, we investigate neglect-
ing mathematical correlations and heteroscedasticity on
geometry-based deformation analysis, where the geome-
try is expressed by B-splines. In addition to the true de-
formation, the true VCM that generates the noisy obser-
vations has to be determined exactly to assess whether
and when the simplified stochastic models affect the re-
jection rate of the null hypothesis that no deformation oc-
curs. They remain, thus, unavoidable, as real data analysis
cannot provide the truth.

The paper is organised as follows. In Section 2, the
methodology of B-spline surface approximation and con-
gruency analysis procedures is reviewed and explained.
This methodology is instantiated in Section 3, based on
simulation, to detect the influence of misspecified VCMs
on the power of the congruency test. The subsequent Sec-
tion 4 provides a further discussion on the results and de-
duces a threshold ratio which highlights the area of reli-
able congruency test results when using simplified VCMs.
Finally, conclusions are drawn in Section 5.

2 Methodology

In this section, the procedure of the B-spline surface ap-
proximation and congruency test are introduced.

2.1 B-spline surface approximation with
VCM

The purpose of surface fitting is to estimate a continuous
model function from the scatter point samples, which can
be implemented by a LS adjustment in the case of redun-
dant measurements. The B-splines are usually employed

to fit point clouds due to their flexibility inmodelling com-
plicated objects.

The mathematical description of a B-spline surface
point [Xk Yk Zk]

⊤ (k = 1, 2, ...,K) is as follows

[Xk Yk Zk]
⊤
=S(ūk , v̄k)

=
n
∑
i=0

m
∑
j=0

Ni,p(ūk)Nj,q(v̄k)Ci,j (1)

here ū = ūk is the location parameter vector in the u-
direction and v̄ = v̄k is the location parameter vector in the
v-direction which is perpendicular to the u-direction. The
surface point builds upon the bidirectional combination of
the basis functionNi,p(ūk),Nj,q(v̄k)with the degree p, q and
control points Ci,j = [CXi,j CYi,j CZi,j]

⊤
, which are located

on a bidirectional net with the number of (n+1) and (m+1)
in the u- and v-directions, respectively.

The B-spline surface approximation involves three
main steps, as summarized by Bureick et al. [4]:
(i) Parametrization of the measurements located in the

u- and v directions into location parameter vector ū
and v̄.

(ii) Determination of the knot vectors U and V in the u-
and v-direction.

(iii) Estimation of the (n + 1) × (m + 1) control points by
means of a linear Gauss–Markov model.

The location parameter and knot vectors of step 1 and 2
are used for the derivation of the basis function Ni,p, Nj,q.
The corresponding information is summarized into a de-
signmatrix for the final estimation step, i. e. the estimation
of thepositions of the (n+1)×(m+1) control points byLS-ad-
justment. Interested readers are referred to [5], [4] and [37].

Given the points observed with the number K located
on a grid defined by s rows and t columns, they also can
be arranged in matrix form as

l =
[[[

[

l1
...
lK

]]]

]

=

[[[[[[[[[[[[

[

X1
Y1
Z1
...
XK
YK
ZK

]]]]]]]]]]]]

]

(2)

The functional model (1) then gives rise to the (point-
wise) observations equations

lk + vk = S(ūk , v̄k) =
n
∑
i=0

m
∑
j=0

Ni,p(ūk)Nj,q(v̄k)Ci,j (3)

where vk denotes the vector of residuals or random devia-
tions regarding the observations lk for point k. These con-

Brought to you by | Technische Informationsbibliothek Hannover
Authenticated

Download Date | 5/22/19 3:37 PM



4 | X. Zhao et al., Influence of simplified stochastic model on deformation analysis

stitute a linear model which can be jointly written in the
form

l + v = Ax (4)

for all the pointswith a (3K×3(n+1)(m+1)) designmatrixA
is shown in (5) and the total (3(n + 1)(m + 1) × 1) parameter
vector x is shown in (6).

A =

[[[[[[[

[

N0,p(ū1)N0,q( ̄v1) 0 0 ⋅⋅⋅ Nn,p(ū1)Nm,q( ̄v1) 0 0
0 N0,p(ū1)N0,q( ̄v1) 0 ⋅⋅⋅ 0 Nn,p(ū1)Nm,q( ̄v1) 0
0 0 N0,p(ū1)N0,q( ̄v1) ⋅⋅⋅ 0 0 Nn,p(ū1)Nm,q( ̄v1)

...
N0,p(ūK)N0,q( ̄vK) 0 0 ⋅⋅⋅ Nn,p(ūK)Nm,q( ̄vK) 0 0

0 N0,p(ūK)N0,q( ̄vK) 0 ⋅⋅⋅ 0 Nn,p(ūK)Nm,q( ̄vK) 0
0 0 N0,p(ūK)N0,q( ̄vK) ⋅⋅⋅ 0 0 Nn,p(ūK)Nm,q( ̄vK)

]]]]]]]

]

(5)

x =
[[[

[

C0,0
...

Cn,m

]]]

]

=

[[[[[[[[[[[[[

[

CX0,0
CY0,0
CZ0,0
...

CXn,m
CYn,m
CZn,m

]]]]]]]]]]]]]

]

(6)

are readily assembled. In addition to the functionalmodel,
we generically define the stochastic model of measure-
ments in terms of Σll, where σ20 is the a priori variance fac-
tor,Qll and P are the cofactor matrix and weight matrix re-
spectively.

Σll = σ
2
0Qll = σ

2
0P
−1 (7)

The LS estimates of the control points may then be ob-
tained through the well-known inverted normal equations

x̂ = (A⊤Σ−1ll A)
−1A⊤Σ−1ll l (8)

The residuals should have zero-mean for an unbiased
generalized LS estimator. To derive the statistical distribu-
tion of test statistic, the Gaussian assumption for the resid-
uals is further necessary.Although theunbiasedness of the
generalized LS estimator (i. e. here the coordinates of the
control points) is still given when the VCM are misspeci-
fied, the solution is less efficient and the VCM of the ad-
justed surface points is biased in case of misspecification.

2.2 Optimal tests in Gauss-Markov models
with normal random deviations and
known VCM

2.2.1 Adequacy evaluation of the functional model

In situations where the observables of a Gauss–Markov
model are known to be truly normally distributed and to

truly have the fully specified VCM Σll, it might still hap-
pen that the functional model Ax within the observation
equations (4) is misspecified and erroneous. Therefore, it
makes sense to carry out a model selection procedure that
evaluates different candidatemodels and indicates the op-
timal one either through relative testing or absolute mini-
mization of an information measure. Both kinds of proce-
dure are based on the log-likelihood function L of the ob-
servation model. Under the aforementioned ‘normal’ dis-
tributional assumption l ∼ N(Ax,Σll), the corresponding
likelihood function is defined to be the probability den-
sity function (pdf) of that multivariate normal distribution
[24], that is,

f (l;x) = 1
(2π)nobs/2(detΣll)1/2

⋅

exp {− 1
2
(l − Ax)⊤Σ−1ll (l − Ax)} (9)

Since we assume the VCM to be (truly) known, wemay
compute its Cholesky decomposition Σll = R⊤R and trans-
form the observation equations (4) via left-multiplication
by (R⊤)−1, resulting in

̄l + v̄ = Āx (10)

with ̄l = (R⊤)−1l, v̄ = (R⊤)−1v and Ā = (R⊤)−1A. The point
of this transformation is that the (possibly fully populated)
VCM Σll of l reduces to the identity VCM I for ̄l, so that, on
the one hand, the LS estimate (8) can be replaced by the
simpler formula

x̂ = (Ā⊤Ā)−1Ā⊤ ̄l (11)

On the other hand, the log-likelihood now takes the form

L(x; ̄l) = −nobs
2

log(2π) − 1
2

nobs
∑
i=1
(Āix − ̄li)

2 (12)
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and is conditionedby the independentlydistributedobser-
vations ̄l. Based on this model, the Akaike information cri-
terion (AIC) and the Bayesian information criterion (BIC)
read (cf. [1, 51])

AIC = −2L(x̂; ̄l) + 2npar, (13)
BIC = −2L(x̂; ̄l) + npar log(nobs) (14)

The smaller the AIC/BIC value, the better the parameter-
ization Ax. Therefore, we should choose among all mod-
els that have the smallest AIC/BIC value. Alternatively, we
could carry out statisticalmodel selection tests in the spirit
of Vuong or Clarke (cf. [1, 51]) to identify the best model.
Once adequate B-spline models have been fitted to point
clouds of two or more epochs, these models can be safely
used within a congruence or deformation test.

2.2.2 Test for congruency

The key point in deformation analysis is to decide whether
significant changes between the two epochs measured oc-
cur or not.More specifically,wehave in epochNe ∈ {1, 2} an
observation vector l(Ne) to be approximated by a B-spline
model A(Ne)x(Ne). We assume the corresponding random
deviations e(1) and e(2) to be normally distributedwith zero
mean and the corresponding VCMs are Σ(1)ll and Σ(2)ll . We as-
sume that each randomdeviation of the first epoch and the
second epoch are uncorrelated. We, thus, have the linear
Gauss–Markov model:

[
l(1)

l(2)
] = [

A(1) 0
0 A(2)

] [
x(1)

x(2)
] (15)

and

Σl(1) ,l(2) = [
Σ(1)ll 0
0 Σ(2)ll

] = σ20 [
Q(1)ll 0
0 Q(2)ll

]

= σ20 [
P(1) 0
0 P(2)

]
−1

= σ20Pl(1) ,l(2) (16)

We will not formulate the hypotheses concerning the
(total) deformation between the two epochs at the level of
the associated control points x(1) and x(2), but at the level
of the surface points F(1)x(1) and F(2)x(2) defined by (3).
There are two reasons for comparing the surface points in-
stead of the control points. Firstly, because of the changes
in the geometry, the model complexity of B-splines may
vary between two epochs, which leads to different num-
bers of control points. In that case, it is complex to define
reference control points between two epochs on which the

congruency could be based meaningfully. Moreover, com-
pared with the large number of surface points, the con-
trol points are relatively small in number and sparsely dis-
tributed in the approximated B-spline surface. Thus, the
detailed deformation cannot be reflected and located suf-
ficiently well by the reference control points. We corre-
spondingly define the null hypothesisH0 that no deforma-
tion occurred by the equation:

H0 : F
(2)x(2) − F(1)x(1) = [−F(1) F(2)] [x

(1)

x(2)
] = 0 (17)

Since we intend to analyse the power function of the con-
gruency test, we also formulate an alternative hypothesis,
which is adequately described by the inequalities

H1 : [−F(1) F(2)] [x
(1)

x(2)
] ̸= 0 (18)

Under the assumptions that the model (15)–(16) is cor-
rectly specified (up to the unknown, true parameter val-
ues) and that the number h of rows of the matrix H =
[−F(1) F(2)] is less than or equal to the total number of
parameters in β = [x(1),⊤ x(2),⊤]

⊤, a uniformly most pow-
erful invariant (UMPI) test exists (cf. [16], Chapter 3), based
on the test statistic

T = 1
σ20

β̂
⊤
H⊤ (H([A

(1) 0
0 A(2)

]
⊤

⋅

Pl(1) ,l(2) [
A(1) 0
0 A(2)

])
−1

H⊤)
−1

Hβ̂ ∼ χ2h (19)

Here, β̂ comprises the LS (or equivalently maximum-
likelihood) estimates

β̂ = [x̂
(1)

x̂(2)
] =([

A(1) 0
0 A(2)

]
⊤

Σ−1l(1) ,l(2) [
A(1) 0
0 A(2)

])
−1

⋅

[
A(1) 0
0 A(2)

]
⊤

Σ−1l(1) ,l(2) [
l(1)

l(2)
] (20)

of the control points for both epochs, and

Σβ̂β̂ = ([
A(1) 0
0 A(2)

]
⊤

Σ−1l(1) ,l(2) [
A(1) 0
0 A(2)

])
−1

= 1
σ20
([

A(1) 0
0 A(2)

]
T

Pl(1) ,l(2) [
A(1) 0
0 A(2)

])
−1

(21)

constituting the corresponding VCM. As we assumed all
cross-correlations between the two measurement epochs
to be zero, we can compute the estimates x̂(1) and x̂(2) by
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6 | X. Zhao et al., Influence of simplified stochastic model on deformation analysis

evaluating (8) for both epochs separately. We now repa-
rameterize the testing problem by setting

Δ = Hβ (22)

so that we canwrite (17) and (18) simpler asH0 : Δ = 0 and
H1 : Δ ̸= 0. Denoting the deformation estimates by Δ̂ =
Hβ̂, we obtain the corresponding VCM via the variance-
covariance propagation law:

ΣΔ̂Δ̂ = HΣβ̂β̂H
⊤ (23)

Thus, the test statistic (19) simplifies to

T = Δ̂
⊤
Σ−1Δ̂Δ̂Δ̂ (24)

whose form resembles the test statistic introduced by
Pelzer [36]. We obtain the test decision via the compari-
son of the numerical value of T (associatedwith the actual
measurement results l(1) and l(2)) with the quantile kχ

2
h
1−α of

the χ2h test distribution at the specified significance level α.
We accept H0 in the case of T ≤ kχ

2
h
1−α, and we reject H0 in

the case of T > kχ
2
h
1−α. We can apply the preceding UMPI test

either ‘globally’ to h ≤ npar surface points that represent
the object of interest surveyed, or ‘locally’ to a single point
(h = 3 for the X-, Y - and Z-coordinate). If more than npar
are to be tested, then the VCM (23) becomes rank-deficient,
in which case its inverse in (24) can be replaced by the
pseudo-inverse, as for the Pelzer test (cf. [34]; p. 439). How-
ever, it is unknown whether such a test still possesses the
UMPI property.

Another situation in which this optimality criterion
will no longer apply is when the true VCM Σl(1) ,l(2) is re-
placed by a numerically different matrix, for example, by
ignoring significant covariances. Such a modified test can
be theoretically expected to have less power than theUMPI
test, i. e. less sensitivity to actual deformations than the
optimal test. We use numerical simulations for this pur-
pose because a quantification of the degradation of test
power has not yet been achieved analytically.

3 Numerical example
Unfortunately, both the deformation and the true VCM of
the observations are unknown in real data analysis. Con-
sequently, we focus in this paper on Monte Carlo simula-
tions to assess the impact of neglecting mathematical cor-
relations and heteroscedasticity on the power of the con-
gruency test. The surfaces to approximate and the stochas-
ticity of the observations can be perfectly controlled and
gradually misspecified by neglecting correlations or as-
suming equal variances of the measurements.

3.1 Simulation of measurement points

3.1.1 Reference VCM set up

When performing B-splines approximations with LS ad-
justment, we obtain the Cartesian coordinates of the con-
trol points so that the TLS measurements, expressed orig-
inally in polar coordinates (i. e. distance r, horizontal an-
gelφ and vertical angel θ), must be firstly transformed into
Cartesian coordinates [X Y Z]. Consequently, the VCM
used in LS adjustment must account for the mathematical
correlations induced by the transformation between polar
and Cartesian coordinates.

The geometrical relationship between point in polar
coordinates and in Cartesian coordinates is given by

[[

[

X
Y
Z

]]

]

= r[[
[

sin θ cosφ
sin θ sinφ
cos θ

]]

]

(25)

The VCM Σrφθ for the observation is fixed here because the
uncertainties of rawmeasurements σr, σφ and σθ could be
estimated from previous experience or themanufacturer’s
data sheet.

Σrφθ =
[[

[

σ2r 0 0
0 σ2φ 0
0 0 σ2θ

]]

]

(26)

Weassume that the standard deviations of the TLS raw
measurements are σr = 10−4m and σφ = σθ = 10−4 rad.
The units are neglected in the following sections for the
sake of simplicity. Through the law of propagation of un-
certainties, the transformed VCM reads.

ΣXYZ = JΣrφθJ
⊤ = [[

[

σ2X σXY σXZ
σYX σ2Y σYZ
σZX σZY σ2Z

]]

]

(27)

where J is the Jacobian matrix containing the derivatives
of the Cartesian coordinates regarding r, φ and θ. The ele-
ments in ΣXYZ are

σ2X = (r cosφ sin θ)2σ2φ + (r sinφ sin θ)2σ2θ + (cosφ sin θ)2σ2r
σ2Y = (r sinφ cos θ)2σ2φ + (r cosφ sin θ)2σ2θ + (sinφ sin θ)2σ2r
σ2Z = (r sin θ)

2σ2φ + cos
2 φσ2r

σXY = σYX = (cosφ sinφ sin2 θ)σ2r + (r
2 cosφ sinφ cos2 θ)σ2φ

− (r2 sinφ cosφ sin2 θ)σ2θ
σXZ = σZX = (−r

2 cosφ sin θ cos θ)σ2φ + (cosφ sin θ cos θ)σ2r
σYZ = σZY = (−r

2 sinφ cos θ sin θ)σ2φ + (sinφ sin θ cos θ)σ2r
(28)
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Figure 1: Scan geometry of the simulated scanning scene.

The non-diagonal elements of the symmetric matrix
ΣXYZ are the mathematical correlation of the Cartesian co-
ordinates for one point. The effect of neglecting themwill,
thus, depend on both the geometry bymeans of the angles
and the respective variances of the measurements. Except
for favourable geometries, i. e. when the angles are close
to zero, it is, thus, difficult to predict how the omissionwill
propagate in the deformation analysis, so that simulations
allow one to investigate on the importance of their consid-
eration.

3.1.2 Data simulation

The procedure of data simulation involves twomain steps:
(i) creation of the sample points from a given mathemat-

ical reference surface, and
(ii) addition of a noises vector with a known VCM corre-

sponding to ΣXYZ (27).

The points of the reference surface can be sampled from
any mathematical function. Because of its smooth prop-
erties, which allow an accurate approximation with B-
splines without being influenced by an inaccurate deter-
mination of the knot vector, the joint normal distribution
function with independent random variables X0 and Y0
was retained. For one epoch, given the mean vector a =
[ax0 ay0]

⊤ and VCM b = diag [b2x0 b2y0], the pdf of bi-
variate normal distribution is shown as follows.

Z0 =f (X0,Y0)

= 1
2πbx0by0

exp(− 1
2
[
(X0 − ax0 )

2

b2x0
+
(Y0 − ay0 )

2

b2y0
]) (29)

The laser scanner in our numerical example is assumed
to be located in the centre of the object with a distance
around 10 and the sample points are assumed as grid
points located in the area of [−10.05 ≤ X ≤ 10.05] and
[−10.05 ≤ Y ≤ 10.05] with a grid length 0.3. A rela-
tively large grid length (0.3) is selected to avoid the great
computational burden. The specific boundaries of the in-
terval guarantee that the X- and Y -coordinates of sam-
ple points are symmetrical regarding the origin. Based
on these parameters, i. e. a, b, X- and Y -coordinates, the
Z-coordinates of the sample points are calculated through
(29). Consequently, we obtain 68 × 68 sample points uni-
formly located on the reference surface.

At least two epochs of point clouds are necessary to
simulate the deformation. The points sampled of each
epoch share the identical X- and Y -coordinates due to the
same sampling resolution.We simulate the deformation of
Z-coordinates between two epochs by setting a different
VCM for the pdfs. Exemplarily, assuming a1 = [0 0]

⊤,
b1 = diag [10 10] and a2 = [0 0]

⊤, b2 = diag [9 9],
the points sampled of epoch 1 and epoch 2 are shown in
Figure 2.

Additionally, two other deformation magnitudes were
simulated by varying theb2 of probability density function
of epoch 2, corresponding to smaller and larger changes in
the center part of the surface. Figure 3 shows the simulated
deformation with various b2:
I. small magnitude (blue curve):

b2 = diag [9.85 9.85],
II. middle magnitude (red curve):

b2 = diag [9.0 9.0], and
III. large magnitude (yellow curve):

b2 = diag [7.5 7.5].
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8 | X. Zhao et al., Influence of simplified stochastic model on deformation analysis

Figure 2: Sampled points of epoch 1 (red) and epoch 2 (blue).

Figure 3: Simulated deformation magnitudes in the case I, II and III.

Please notice that the deformation here refers to the dis-
tance between the reference test points belongs to various
epochs.

In the next step, a noise vector is added to the true
sampled points. For one point, the noisy Cartesian coor-
dinates are as follows:

[[

[

X
Y
Z

]]

]

= G⊤ ⋅ randn(μ0,Σ0) +
[[

[

X0
Y0
Z0

]]

]

(30)

where μ0 = [0 0 0]
⊤ and Σ0 = diag [1 1 1]. G⊤ de-

note a regular lower triangular matrix of the Cholesky fac-
torization ΣXYZ = G⊤ ⋅G (cf. [20]). A total of 10,000 simula-
tions for each point were carried out using theMonte Carlo
approach.

3.2 Simplified VCMs

The a posteriori VCM and the simplified matrices are ap-
plied in a B-spline surfaces approximation to detect the
impact of the inadequate VCMs on the geometry-based de-

formation analysis. The three VCMmodels retained,which
correspond to usual misspecification, are
(i) VCM model 1: considering the mathematic correla-

tion among Cartesian coordinates within one point.
Σref is a block diagonal matrix and it is exactly the
a priori VCM of the measurements simulated (Sec-
tion 3.1).

Σref =

[[[[[[[[[[[[[[[[

[

σ2x1 σx1y1 σx1z1
σy1x1 σ2y1 σy1z1
σz1x1 σz1y1 σ2z1

0 ⋅⋅⋅ 0
0

σ2x2 σx2y2 σx2z2
σy2x2 σ2y2 σy2z2
σz2x2 σz2y2 σ2z2

0
...

. . .
...

0 ⋅⋅⋅

σ2xK σxKyK σxKzK
σyKxK σ2yK σyKzK
σzKxK σzKyK σ2zK

]]]]]]]]]]]]]]]]

]

(31)

(ii) VCMmodel 2: considering the measurements as inde-
pendent but with different variances. Σdiag is exactly
the diagonal matrix from (31).

Brought to you by | Technische Informationsbibliothek Hannover
Authenticated

Download Date | 5/22/19 3:37 PM



X. Zhao et al., Influence of simplified stochastic model on deformation analysis | 9

Σdiag =

[[[[[[[[[[[[[[[[

[

σ2x1 0 0
0 σ2y1 0
0 0 σ2z1

0 ⋅⋅⋅ 0
0

σ2x2 0 0
0 σ2y2 0
0 0 σ2z2

0
...

. . .
...

0 ⋅⋅⋅

σ2xK 0 0
0 σ2yK 0
0 0 σ2zK

]]]]]]]]]]]]]]]]

]

(32)

(iii) VCMmodel 3: considering the measurements as inde-
pendent and with equal variances. Σiden is a diagonal
matrixwith variance σ2I = 7.98e

−7, which is exactly the
mean of the diagonal elements of (32).

Σiden =

[[[[[[[[[[[[[[[[[[[[

[

σ2I 0 0
0 σ2I 0
0 0 σ2I

0 ⋅⋅⋅ 0

0
σ2I 0 0
0 σ2I 0
0 0 σ2I

0
...

. . .
...

0 ⋅⋅⋅

σ2I 0 0
0 σ2I 0
0 0 σ2I

]]]]]]]]]]]]]]]]]]]]

]
(33)

3.3 Selection of the B-spline model

The investigation of the stochastic model’s impact on the
congruency test should be based on an appropriate func-
tional model which is sufficient to describe the geometri-
cal features of each epoch. It is expected that the speci-
fication of knot vectors and the number of control points
contribute to the goodness of the approximation. In our
numerical example, the knot vectors U and V in u- and
v-direction are determined by the Piegl and Tiller ap-
proach [37], since it is a fast and easy algorithm to align the
knot vectors to the location parameters. Thus, the good-
ness of the approximation replied mainly on the complex-
ity of B-spline model, i. e. the number of control points.
Due to the symmetry of the area simulated, the number of
control points are assumed to be identical in the u- and v-

directions, i. e. m = n. We compared the bi-cubic B-spline
models with a control point number from m = n = 5 to
m = n = 20.

The model selection procedures based on the infor-
mation criterion are employed to help us in selecting the
optimal functional model. The optimal number of control
points of the bi-cubic B-spline model selected by AIC and
BIC procedures are summarized in Table 1.

Since theAIC andBIC values are quite similar between
the models m, n = 10 and m, n = 11 for epoch 1, which is
also the same case for epoch 2 between the models m, n =
11 and m, n = 13, we would follow the BIC conclusion to
choose the most parsimonious B-spline model to save the
computation burden. Consequently, the optimal bi-cubic
B-splinemodel for epoch 1 ism, n = 10while that for epoch
2 in all three cases ism, n = 11.

3.4 Results of the congruency test

Based on the three VCMs, the surface points of the two
epochs are adjusted as Ŝ1 and Ŝ2. Both global and local
congruency tests were carried out on all 10,000 repeti-
tions. The number of null hypotheses rejected (Nrej) di-
vided by the number of repetitions (M) is defined as the re-
jection rate (Nrej/M). We selected 68 representative points
in the global congruency test to avoid the aforementioned
rank-deficiency problem in section 2.2.2 and due to the
symmetry of the points sampled. The locations of the rep-
resentative points are shown in Figure 4 in the context of
the simulated surface of epoch 1.

3.4.1 Case 1: Zero deformation

The reference surfaces in the first simulation, are the same
in the two epochs, i. e. b1 = b2 = diag [10 10].

The null hypothesis H0 is in none of the 10,000 repe-
titions rejected in the global scale. In the local scale, the
rejection rates of the three stochastic models are various.
Figure 5 presents the corresponding results for the zero de-
formation case, where the red curve, indicating the rejec-
tion rate of the estimated deformation with Σref , stabilizes
at 5%, which is consistent with the assumed type-I error

Table 1: The optimal bi-cubic B-spline model evaluated by model selection procedures.

Dataset epoch 1 epoch 2 (case I) epoch 2 (case II) epoch 2 (case III)

AIC m, n = 11 m, n = 13 m, n = 13 m, n = 13
BIC m, n = 10 m, n = 11 m, n = 11 m, n = 11
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Figure 4: Location of the test points (red points) in the context of the simulated surface of epoch 1.

Figure 5: The rejection rate of the local congruency test for the case of zero deformation within 10,000 repetitions.

rate α = 0.05. The blue dotted curve fluctuates slightly at a
higher rejection rate (6−10%), whereas the green dashed
curve, unlike the other two, shows a small rejection rate in
the centre part, which increases and reaches 30% towards
both edges.

The estimated surface points with the reference VCM
accounting for mathematical correlations are congruent
with the true values. High rejection rates are obtained in
the twoother cases, especially at the edgepoints estimated
with the identity VCM. For the VCM accounting only for
heteroscedasticity (Σdiag) the rejection rate is similar to the
one obtained for the referenceVCMup to a variate inflation
factor of approximately 2−4%, Thus, the fact that correla-
tions decrease the variance of the estimated parameter is
confirmed (see e. g. [18]).

3.4.2 Case 2: Deformation

Three magnitudes of deformation are simulated (see Fig-
ure 3) and investigated. The null hypothesis in the global
congruency test was rejected for all the 10,000 repetitions
at type-I error rate α = 0.05. This is consistent with the ac-
tual differences between the simulated two epochs. How-

ever, the test static values T of the three models differ sig-
nificantly. Table 2 shows the range of test statistic values
in the global test of the three stochastic models for case
II exemplarily, while the quantile value with type-I error
rate α = 0.05 is kχ

2
h
1−α = 233.98 (h = 204 for X-, Y - and

Z-coordinate of 68 test points).
The local congruency tests were additionally carried

out to find the individual points responsible for the rejec-
tion of the general null hypothesis. The rejection rate of
10,000 repetitions at type-I error rate α = 0.05 for 68 test
points are shown in Figure 6, 7 and 8 for the three deforma-
tion magnitudes. The red curve denotes the rejection rate
of the deformation estimated with Σref , while the blue dot-
ted curve and green dashed curve correspond to Σdiag and
Σiden as the stochastic model, respectively.

The test results of the deformation estimated with
Σref , i. e. the true stochastic model, are consistent with
the simulated deformations. Larger deformation occurs in
the centre part in all three cases and the rejection rates
should stabilize at 100%. However, for smaller deforma-
tion (case I shown in Figure 6), using Σiden does not pro-
vide the correct rejection of the null hypothesis even in
the centre part of the surface, which is actually deformed.
During the deformation decreasing to the local minimum
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Table 2: Global congruency test statistics of case II with the quantile value with type-I error rate α = 0.05 kχ
2
h
1−α = 233.98.

Test statistic Tref Tdiag Tiden

Range (1.57−1.62) × 105 (5.91−6.12) × 104 (5.02−5.28) × 103

Figure 6: Rejection rate of the local congruency test for 68 points in 10,000 repetitions using various VCMs (case I).

Figure 7: Rejection rate of the local congruency test for 68 points in 10,000 repetitions using various VCMs (case II).

Figure 8: Rejection rate of the local congruency test for 68 points in 10,000 repetitions using various VCMs (case III).
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values, the green and blue curves of case I and II (Fig-
ure 7) change faster than the red one with lower rejection
rates. For case III (Figure 8), the green and blue curves
highlights that the null hypothesis is wrongly accepted for
point X(Y) = −2.85 and X(Y) = 2.85, whereas the rejection
rate is constant at a 100% level for the red curve. When
deformation increases after the local minimumpoints, the
green and blue curves of case I perform as they do in the
zero-deformation case (Figure 5) and indicate a false lower
rejection rates. For case II, slower changes with lower re-
jection rates can be found in the green andblue curves. For
the three deformation magnitudes under consideration,
the rejection rates on the edge part where no deformation
occurs (−10.05 ≤ X(Y) < −8.25 and 8.25 ≤ X(Y) < 10.05)
are comparable with the zero-deformation case (Figure 5),
which is expected.

4 Discussion

Although the congruency tests in the global scale are con-
sistent with the simulated truth, the local test results,
in the two cases, i. e. zero-deformation and deformation,
vary significantly (see Figure 5, 6, 7 and 8). In this sec-
tion, these results are put into perspective, focusing on the
balance between heteroscedasticity, geometry andmathe-
matical correlations.

4.1 The approximated results

Because of the unbiasedness of the LS estimator, the VCM
chosen – either the true or an simplified matrix – will not
impact the approximated surface points Ŝ1 and Ŝ2, pro-
vided that the safety of the functionalmodel is guaranteed
by the model selection procedure. However, the accuracy
of approximation varies from the center to the edges. Ex-

emplarily, Figure 9 shows 95% confidence interval radius
of test points’ residuals (v̂x, v̂y and v̂z) in 10,000 repeti-
tions. As expected, the estimated points are concentrated
in the center, which is reflected by the small radius of
95% confidence interval (at the level of 10−6). The approx-
imation becomes inaccurate at the edges since the radius
surges up to 10−4 level, which has to be related both to
the angle uncertainties contribution and the larger vari-
ances due to the lack of neighbouring points. The same
behaviour holds true for the estimated deformation.

4.2 Congruency test for the case of zero
deformation

In the congruency test, the rejection rate depends on the
value of the test statistics T (see (24)) and, thus, on the
quantities Δ̂ and ΣΔ̂Δ̂. The reason for the different rejection
rates in case of zero deformation, found in Figure 5, are to
be searched for in the structure of the VCMs themselves.

The standard deviation of the estimated deformation
for each point σΔ̂ is derived as

σΔ̂ = √σ2α + σ
2
β + σ

2
γ (34)

where σ2α, σ
2
β and σ2γ are eigenvalues of the VCM for each

test point. Figure 10 shows the standard deviation of the
estimated deformation, i. e. σΔ̂ref (red curve), σΔ̂diag (blue
curve) and σΔ̂iden (green curve), which are correspondingly
obtained with three VCM models (see (31), (32), (33)). The
red and blue curves have a similar shape, i. e. smaller val-
ues in the center part increasing on both edges, the blue
one having lower magnitudes than the red one, i. e. ac-
counting for correlations is similar to increasing the vari-
ance. The green curve, different from the other two, keeps
a fluctuation in a steady range around (3 ∼ 5)×10−4 inmost
regions (−8.85 ≤ X(Y) < 8.85). That is due to the initial as-
sumption of homoscedasticity, i. e. all measurements have

Figure 9: The radius 95% confidence interval of residuals in terms of ΔŜx , ΔŜy and ΔŜz .
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Figure 10: Standard deviation of the deformation estimated by the three VCMs.

equal accuracy. It surges to 1.9×10−3 at the edges due to the
aforementioned border influence of the approximation.

The difference of the rejection rate shown in Figure 5
can be thus attributed to the heteroscedasticity of the TLS
measurements and the impact of the mathematical corre-
lations.

4.3 Congruency test for the case of
deformation

The statistics T in case of deformation do not only de-
pendonΣΔ̂Δ̂ but also on thedeformationmagnitudes Δ̂ (see
(24)).

When themagnitude of deformation is strong enough,
for example, in the centre part of case II and III, a large
T is obtained, i. e. a high rejection rate is independent of
the VCMs chosen in the approximation. However, the VCM
plays a dominant role in determining T for smaller de-
formation magnitudes (case I). Thus, neglecting the het-
eroscedasticity and mathematical correlation leads to dif-
ferent rejection rates.

As the deformation decreases toward both edges, T
decreases as the impact of mathematical correlations in-
creases (see (28)). This corresponds to an increase of the
heteroscedasticity, i. e. a less favorable geometry. Thus, the
effect of heteroscedasticity and mathematical correlation
of VCMs are non-negligible in this region.

Indeed, taking a closer look at Figure 7, the turning
points (X(Y) = ±2.55) can be identified, where the variance
increase due to heteroscedasticity is not strong enough to
compensate for the impact of neglecting the mathemati-
cal correlations. This effect was shown in Section 4.2 lead-
ing to an inflations factor on the rejection rate (see Fig-
ure 5 blue and red curves). Consequently, it remains indis-
pensable to account for mathematical correlations for de-
formations with small magnitudes, particularly under un-

favourable scanning conditions with increasing incidence
angles. Additionally, homoscedasticity is a bad alterna-
tive. The rejection rate with Σiden increases at the edge re-
garding Σref and Σdiag due to the non-consideration of the
uncertainty changes due to the geometry, i. e. larger range
and incidence angles, and indicate lower rejection rates
when the deformationmagnitude is small, due to both the
homoscedasticity assumption and the neglection of math-
ematical correlations.

The ratio of the estimated deformation to its standard
deviation R = Δ̂iden/σΔ̂iden also provides an indication of
the points that are not influenced by simplification of the
VCM. In all the cases, the points withR larger than 2.2 have
not been influenced by the homoscedastic VCM, as shown
in Figure 11. However, improving the stochastic model
by means of taking heteroscedasticity and mathematical
correlations into account becomes increasingly important
when the ratio is lower than the threshold. Since the mea-
surements are considered as equal accurate inmost cases,
which is actually untrue, this threshold of ratio helps to
fix the appropriate scope for applying the homoscedastic
VCM.

5 Conclusion
In the B-splines approximation geometry-based method
which is used to detect deformations of objects scanned
with TLS, both the functional as well as the stochastic
model impacts the power of the congruency test. This test
is proposed by Pelzer [36] and is normally used to judge
whether the differences of two approximations between
two epochs are significant or not.

When the powerful B-splines approximation is used,
the Cartesian coordinates of the control points can be esti-
mated by LS adjustment. Because the raw measurements
of TLS consist of range and angles, mathematical correla-
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Figure 11: Ratio of the estimated deformation to its standard deviation in the three cases.

tions have to be considered when specifying the stochas-
tic model of the observations. They are, however, mostly
neglected and the transformed Cartesian coordinates are
simply considered as being independent with equal accu-
racy.

In this contribution, we aimed to highlight the risk of
not accounting for this specific type of correlations, by si-
multaneously showing the impact of heteroscedasticity on
the results of the congruency test for deformation analysis.
Monte Carlo simulations were used since both the refer-
ence surfaces of the two epochs and their stochastic prop-
erties have been known exactly. The model selection pro-
cedures were employed to guarantee the adequacy of the
functional model. The VCM was gradually misspecified,
neglecting in a first stepmathematical correlations and as-
suming homoscedasticity in a second one. The stochastic
characters of points contribute to different rejection rates
in the congruency test for zero-deformation. The most
popular identity VCM, which assumes all measurements
as independent with equal accuracy, leads to higher rejec-
tion rates on the edges due to underestimating the points
position errors. Diagonal VCM with specified variances is
better, however, it induces higher rejection rates, espe-
cially under unfavourable geometries. Indeed, in the con-
gruency test for deformation case, when the differences
between two epochs are large enough to play the dominant
role in test statistics, the effect of a misspecified stochastic
model is insignificant. However, the stochastic models be-
come increasingly important when the deformation mag-
nitudes decrease. Consequently, although it is tempting to
reduce the computational burden, the effect of mathemat-
ical correlations and heteroscedasticity should not be un-
derestimated in the deformation analysis using B-splines
modelization and congruency tests. The ratio of the esti-
mated difference to its standard deviation helps to judge
whether the simplified VCM is able to offer the reliable re-
sults in deformation analysis.

It can be concluded that, according to our simulation
example, the simplification of the stochastic model has
a significant impact on the B-spline-based deformation
analysis, especially in the smaller deformation area with
larger uncertainties. The variance inflation factor remains
to be studied inmore detail to potentially simplify the fully
populated VCM into diagonal matrices when congruency
tests are employed.
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Abstract: In the field of engineering geodesy, terrestrial
laser scanning (TLS) has become a popular method for de-
tecting deformations. This paper analyzes the influence of
the uncertainty budget on free-form curves modeled by
B-splines. Usually, free-form estimation is based on scan-
ning points assumed to have equal accuracies, which is
not realistic. Previous findings demonstrate that the resid-
uals still contain random and systematic uncertainties
caused by instrumental, object-related and atmospheric
influences. In order to guarantee the quality of derived es-
timates, it is essential to be aware of all uncertainties and
their impact on the estimation.

In this paper, a more detailed uncertainty budget is
considered, in the context of the “Guide to the Expression
of Uncertainty in Measurement” (GUM), which leads to a
refined, heteroskedastic variance covariancematrix (VCM)
of TLS measurements. Furthermore, the control points of
B-spline curves approximating a measured bridge are es-
timated. Comparisons are made between the estimated
B-spline curves using on the one hand a homoskedastic
VCM and on the other hand the refined VCM. To assess the
statistical significance of the differences displayed by the
estimates for the two stochastic models, a nested model
misspecification test and a non-nested model selection
test are described and applied. The test decisions indicate
that the homoskedastic VCM should be replaced by a het-
eroskedastic VCM in the direction of the suggested VCM.
However, the tests also indicate that the considered VCM
is still inadequate in light of the given data set and should
therefore be improved.

Keywords: Terrestrial laser scanning, deformations, un-
certainty budget, GUM, B-spline approximation, Gauss-
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1 Introduction
In the field of engineering geodesy, terrestrial laser scan-
ning (TLS) has become a popular method for the purpose
of detecting deformations and displacements, with three
possible measurement modes (1D, 2D and 3D) under vari-
ous conditions. In this paper, the focus is on the 2D case,
in which the laser scanner carries out profile measure-
ments. This kind of measurement is important, e.g., for
load tests and deformation analysis of elongated objects
such as wind energy turbines, bridges and high rise build-
ings. To detect the deflection for instance of bridges, the
2Dprofilemode is chosen, andoftentimesB-Spline estima-
tion is used to increase the accuracy of approximated dis-
placements. In many cases, however, the measurements
are considered with equal accuracies, which assumption
is not realistic. Indeed, the residuals of free-form curves
were found to contain both random and systematic uncer-
tainties caused by instrumental, object-related as well as
atmospheric influences [cf. 1]. In order to guarantee the
quality of measurements and to obtain realistic analysis
results, it is essential to be aware of all uncertainties and
their impact on the measurements.

For this reason, the sophisticated consideration of all
occurring uncertainties sources is necessary [4]. These
sources can be divided into different influencing areas
and into different effects (random, systematic) on the re-
sult. Some of the earlier accuracy investigations were car-
ried out by Lichti et al. [29], Lichti and Harvey [28], Lichti
et al. [27] and Balzani et al. [5]. Calibration and anal-
ysis of errors occurring in measurements from pulsed
and phase ranging TLS were carried out by Reshetyuk
[35] and Schulz [37], respectively. Specifically, axes er-
rors were investigated by Neitzel [31] and Gordon [12].
The influence caused by the incidence angle were inves-
tigated by Eling [10], Soudarissanane and Lindenbergh
[39], Soudarissanane et al. [40], Zámečníková et al. [43],
and Zámečníková et al. [44]. Environmental influences
were studied by Hejbudzka et al. [15] and Borah and Voelz
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2 | X. Zhao et al., Statistical evaluation of uncertainty budgets

[7]. As for comprehensive evaluation of data quality, Gu-
mus and Erkaya [13] carried out investigations of the po-
sitioning accuracy of TLS using 3D models obtained from
point cloud data, and Fernández Pareja et al. [11] pre-
sented a procedure for assessing the observational qual-
ity and estimated uncertainty values of TLS measure-
ments.

Based on the uncertainty budget, a refined VCM for
observations is necessary in order to model the impacts
of the main error sources on the data quality. Kauker and
Schwieger [21] and Harmening et al. [14] developed a pro-
cedure for a synthetic covariance matrix based on an ele-
mentary error model containing different groups of corre-
lations. Their approach allows for themodeling of correla-
tions both between the different coordinate components of
a single laser scanner point and between different points.
We take a slightly different approachwhich is basedonThe
“Guide to the Expression of Uncertainty in Measurement
(GUM)” [18, 17].

GUM has been internationally accepted as the stan-
dard for the evaluation of uncertainties in measurements
[38]. GUM groups the uncertainties according to evalua-
tionmethod into TypeA and TypeB instead of randomand
systematic errors, which make it possible to consider both
types of uncertainties as randomvariables. Type A compo-
nents are determined by statistical analysis from repeated
observations, whereas Type B components are evaluated
by other means such as experience, manufacturer’s speci-
fication and calibration information. Furthermore, the law
of propagation of uncertainty is used in linear and lin-
earizedmodels to estimate the output uncertainty. Besides
the normal distribution, GUM recommends further types
of distributions for the input quantities, e.g. rectangular,
triangular and trapezoidal distributions. Koch [24] and
Alkhatib and Kutterer [1] presented a method for setting
up the combined uncertaintymodel based on GUM, apply-
ing error propagation via Monte Carlo simulation instead
of using the law of propagation of uncertainty. Alkhatib
et al. [2] applied the GUM to K-TLS vertical profile scans
and combined it with a deterministic approach based on
fuzzy sets. Alkhatib et al. [3] took a few influence factors
into consideration and applied the uncertainty model to
B-spline estimation.

In this paper, we analyze an extended uncertainty
budget for TLS measurements based on the GUM in the
context of bridge measurements in 2D profile mode. This
budget will be used to derive covariance matrices for
the measured TLS coordinates. These covariance matri-
ces, which are characterized by non-uniform variances
(i.e., heteroskedasticity) will serve as a ‘refined’ stochas-
tic model in approximating the measured bridge profile

by a B-spline curve. In order to obtain a feasible esti-
mation and testing procedure, correlations between co-
ordinate components and between different TLS points
are currently neglected. The adjustment results will be
compared to the results from an approximation based
on a simple homoskedastic model. In order to evalu-
ate the effect of the use of the refined covariance ma-
trix on the adjustment (in comparison to the simple co-
variance matrix), we propose two different testing proce-
dures. The first procedure, which utilizes a Rao’s score test
proposed in Kargoll [20], tests the homoskedastic model
(as the null hypothesis) against an unspecified multiple
of a fully specified diagonal matrix, based on the afore-
mentioned heteroskedastic covariance matrix. The sec-
ond procedure, which is based on a well-known non-
nested testing principle by Cox [9], tests the homoskedas-
tic and the fully specified heteroskedastic model inde-
pendently against each other. The extension of this es-
timation and testing procedure to the more realistic sce-
nario of correlated coordinates and points constitutes a
formidable task which will be undertaken in future re-
search.

The paper is organized as follows. In Section 2 we
summarize typical influence factors affecting TLS mea-
surements in three domains: instrumental, object-related
and atmospheric influences. In Section 3, the law of prop-
agation of uncertainties is used to derive a refined, het-
eroskedastic covariance matrix. The B-spline curve model
according to Piegl and Tiller [34] will be briefly outlined
in Section 4. The focus of the current contribution lies on
thedevelopment of the twoaforementionedprocedures for
testing the validity of a specified covariance matrix. Sec-
tion 5 explains the theory behind these statistical hypoth-
esis tests. Section 6 gives the estimation and testing results
with respect to a TLS profile of a bridge, modeled as a B-
spline curve.

2 Uncertainty budget

The qualitative and quantitative uncertainty budget of a
laser scanner needs to be individually investigated for
every instrument and measurement setup. According to
the error sources, the uncertainties of TLS measurements
can be divided into instrumental, object-related and atmo-
spheric influences. As mentioned above, the Z+F Imager
5006 was used within the current study to obtain the nu-
merical examples. Therefore, the exemplified values of the
measurement uncertainties are mostly given for this type
of scanner.
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Table 1: Uncertainty budget of the instrumental influence for the Z+F Imager 5003 and 5006.

Source of uncertainty Evaluation Distribution Expected value Standard uncertainty

range noise (Z+F 5006) type B normal variable ur = 0.4 mm
scale error (Z+F 5003) type B normal 1 pm uk0 = 0.5 pm
zero point error (Z+F 5003) type B triangular 4 mm um0

= 0.8 mm
angle noise (Z+F 5006) type B normal variable uθ = uφ = 7.7 mgon
resolution for zenith angle (Z+F 5006) type B rectangular 1.0 mgon uξθ = 0.6 mgon
resolution for horizontal angle (Z+F 5006) type B rectangular 1.0 mgon uξφ = 0.6 mgon
collimation axis error (Z+F 5003) type B normal −37.8 mgon uc = 5.4 mgon
horizontal axis error (Z+F 5003) type B normal −30.2 mgon uh = 1.9 mgon
vertical index error (Z+F 5006) type B normal −17.7 mgon uξv = 5.3 mgon

2.1 Instrumental influences

The best way to quantify instrumental influences are cal-
ibrations. As no standard for the calibration of TLS sys-
tems exists and since the working principle is similar to
that of total stations, it seems natural to tentatively use the
standard for traditional geodetic instruments, e.g. “Op-
tics and optical instruments – field procedures for test-
ing geodetic and surveying instrument – Part 5: Total sta-
tions” [16].

The following error budget in Table 1 for instrumen-
tal influences is mainly based on the technical data sheet
of Z+F Imager 5006 [46], and some are from the previous
calibration result of Z+F Imager 5003. The GUM recom-
mends certain standard types of probability density func-
tions (pdfs) as probabilistic models (e.g., normal, trape-
zoidal, uniform and triangular pdfs) for input quantities.
Following this approachwe assign to each influence factor
a specific pdf and standard uncertainty according to the
following list:
– range noise is assumed as normally distributed [1], the

standard uncertainty (ur ) is given by Zoller+Fröhlich
[46].

– scale error is assumed as normally distributed [24],
both the expected value and standard uncertain-
ties (uk0 ) of scale error are according to Gordon
[12].

– zero point error is assumed as triangularly distributed
[24], both the expected value and standard uncer-
tainty of zero point error (um0

) are according toGordon
[12].

– angle noise is assumed as normally distributed [1],
the standard uncertainties of angle noise (uθ/uφ) are
given by Zoller+Fröhlich [46].

– resolution for zenith/horizontal angle are assumed as
rectangularly distributed [2]. Zoller+Fröhlich [46] in-
dicates the upper-boundary is 2 mgon so that the er-
rors can be assumed to be uniformly distributed on

the interval [0, 2]mgon. The expected values and un-
certainty (uξθ /uξφ ) of angular resolution are calculated
according to (2).

– collimation axis error, horizontal axis error and ver-
tical index error are all assumed to be normally
distributed, the corresponding expected values and
the standard uncertainties (uc/uh/uξv ) are given by
Neitzel [31].

The equations for calculating expected values and un-
certainties of triangular and rectangular distributions are
shown in the following. We have for a triangular distribu-
tion [18]

Etri =
a+ + a−

2

Utri = √
a2
6

(1)

with a = (a+ − a−)/2, where a+ and a− is the upper and the
lower bound, respectively.

For the rectangular distribution, the expected values
and standard uncertainty are calculated as [18]

Erec =
a+ + a−

2

Urec = √
a2
3

(2)

The standard uncertainty of the angular resolution, which
obeys a rectangular distribution, is calculated as uξθ =
uξφ = 0.6 mgon. All information of the instrumental errors
used for creating the correspondingVCMs are shown in Ta-
ble 1.

2.2 Object-related influence

Themeasurement quality does not only depend on the TLS
measurements’ precision and accuracy. The object proper-
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Table 2: Uncertainty budget of atmospheric influence.

Source of uncertainty Evaluation Distribution Expected influence of value Standard uncertainty

Temperature type B normal 1.00 (ppm/ °C) uΔt = 0.5 °C
Pressure type B normal 0.29 (ppm/hPa) uΔp = 1 hPa
Partial water vapor pressure type B normal 0.04 (ppm/hPa) uΔe = 19 hPa

ties, e.g., the type of material, the surface color, the reflec-
tivity as well as the incidence angle (IA) also significantly
influence the data quality.

Mazalová et al. [30] claimed that the color of the tar-
get contributes to the uncertainty of a measured distance.
However, in the current paper, the influence of color is
not considered because it was found to be insignificant
in comparison to the whole uncertainty budget of TLS.
Zámečníková et al. [43] and Zámečníková et al. [44] inves-
tigated the influence of the IA and drew the conclusion
that at close ranges of 3.5 m – 5.2 m other influence are
more relevant than the IA, while at 30 m, significant in-
fluences are detected. However, the stochastic properties
of the uncertainty could not be quantified because the ref-
erence distances are too noisy. As for the influence of sur-
face reflectivity, Zámečníková et al. [45] assumed that the
signal strength depends linearly on the target reflectance,
andpresented the functionof distanceuncertaintywith re-
spect to distance and signal strength.

Although object-related influences are clearly de-
tected, it is still difficult to model them separately
due to the unclear correlation with other influence fac-
tors. According to Soudarissanane and Lindenbergh [39],
Soudarissanane et al. [40], Zámečníková et al. [43] and
Zámečníková et al. [44], the influence of the IA and the
range are closely related to each other, but an exact corre-
lation between the two is actually not known. Kauker and
Schwieger [22] consider for the object-related component
of their synthetic covariance matrix, on the one hand, the
IA and the distance between object and scanner as sources
of uncertainty. On the other hand, theymodeled jointly, as
a group of surface-related sources of uncertainty, the influ-
ence of color, penetration depth, roughness and reflectiv-
ity.

Wujanz et al. [42] proposed an alternative approach
to modeling object-related influences, based directly on
recorded intensity values. These reflect influences that are
caused by the acquisition configuration as well as by in-
terdependencies between the signal and object surface. In
otherwords, the intensity is representative of all the object-
related influences as well as of the range noise. Wujanz et
al. [42] determined the standard uncertainty uI of a range,
including object-related influences, from themeasured in-

tensity through the regression

uI = k1 ⋅ intensityk2 , (3)

where the unknown parameters k1 and k2 are estimated
via least squares adjustment, resulting in the estimates
k1 = 1.61715 and k2 = −0.57069 for the Z+F Imager 5006.
Since the uncertainty of the range noise ur in Table 1 is
included in uI , which also comprises object-related influ-
ences, the former is replaced by the latter intensity-based
in Section 3.

2.3 Atmospheric influence
The atmosphere also has an influence on the data qual-
ity through affecting the propagation speed of electromag-
netic waves, which depends mainly on the refractive in-
dex, the density of atmospheric layer and the wavelength
(see Table 2). Gordon [12] and Kauker and Schwieger [22]
have considered the atmospheric influence on the respec-
tive covariance matrix. The following compilation of re-
sults follows the latter exposition.

The Barrel-Sears formula [6] is recommended by the
Association of Geodesy General Assembly to calculate the
group index of refraction ng according to

(ng − 1) ⋅ 106 = 287.604 +
4.886
λ2
+
0.068
λ4

(4)

where λ denotes the specific wavelength in micrometers.
To calculate the specific atmospheric influence, the stan-
dard atmosphere should be reduced to real atmospheric
conditions (see Joeckel et al. [19]) by using

(na − 1) ⋅ 106 = Ng ⋅
273.15
1013.25

⋅
P
T
−
11.27
T ⋅ e

(5)

with Ng = (ng − 1) ⋅ 106, where T, P, e denote tempera-
ture, pressure and partial water vapor pressure, respec-
tively. Based on (5), the total differential can be calculated;
Joeckel et al. [19] give the corresponding coefficients of the
mean atmosphere for a temperature of 17 °C (T = 290.15 K),
a pressure of 1000 hPa and a water vapor pressure of
11 hPa. Finally, the atmospheric influence on distance
measurements can be approximated according to Rüeger
[36] by

Δna ⋅ 106 = −1.00 ⋅ Δt + 0.29 ⋅ Δp − 0.04 ⋅ Δe, (6)
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where Δt, △p and Δe represent, respectively, the changes
of temperature, pressure and partial water vapor pressure,
compared with the standard atmosphere (at temperature
t = 0 °C, pressure p = 1013.25 hPa, partial water vapor
pressure e = 0 hPa, and CO2 content 0.0375% = 375 ppm).
Rangemeasurements are corrected by the product of mea-
sured range and Δna, that is,

ξA = r ⋅ Δna. (7)

The uncertainties of atmospheric corrections are linked to
the accuracies of the atmospheric measurements (Δt, Δp,
Δe) given byRüeger [36]. The results are summarized in Ta-
ble 2, based on the distributions given in ISO [16]. Specif-
ically, uΔt , uΔp and uΔe depend on the accuracies of the
pocket barometers, the electronic thermistor thermome-
ters and the hygrometer. There are several laser scanners
that do not allow one to correct for atmospheric effects.
For such scanners, the uncertainties related to the atmo-
sphere are larger, with typical values of uΔt = 20 °C and
uΔp = 20 hPa.

Based on the equations (4) and (5), the uncertainty uξA
caused by atmospheric factors can be calculated as

u2ξA = B
TΣatmB = BT

[[

[

u2Δt 0 0
0 u2Δp 0
0 0 u2Δe

]]

]

B (8)

with coefficient matrix BT = r[−1.00,0.29, −0.04] and the
VCM Σatm of the atmospheric factors. This model is valid
only for short distances, as considered in our current ap-
plication (see Section 6).We refer to Kauker and Schwieger
[21] for an atmospheric model that is generally adequate
also for long distances.

3 Uncertainty modeling by means
of the law of propagation of
uncertainty

After the preceding analysis, the uncertainty budget is
summarized for all influence factors. The subsequent steps
have the goal to obtain the observations’ VCM and weight
matrix in order to study the influence of the uncertainty
budget on B-Spline curve estimation. To calculate the
VCM, the law of propagation of uncertainty [cf. 18, p. 55]
is used here.

The geometrical relationships between anobservation
in polar coordinates (r,θ,φ) and in Cartesian coordinates
(X,Y ,Z) are given by

[[

[

X
Y
Z

]]

]

= r[[
[

sin(θ)cos(φ)
sin(θ) sin(φ)

cos(θ)

]]

]

, (9)

where r is the measured range, φ the measured horizontal
rotation angle and θ the measured vertical rotation angle.

According to the influences studied in Section 2, cor-
rections should be added respectively to r, θ and φ, which
corrections influence the Cartesian coordinates by means
of the law of propagation of uncertainty. The corrected for-
mulas read

X = (r(1 + k0) +m0 + ξA) sin(θ + ξθ + ξv)
× cos(φ + ξφ + c/ sinθ + hcotθ) (10)

Y = (r(1 + k0) +m0 + ξA) sin(θ + ξθ + ξv)
× sin(φ + ξφ + c/ sinθ + hcotθ), (11)

Z = (r(1 + k0) +m0 + ξA)cos(θ + ξθ + ξv), (12)

The components are defined as follows:

k0 … scale factor
m0 … zero point error
ξφ … horizontal resolution
ξθ … vertical resolution
c … collimation axis error
h … horizontal axis error
ξv … vertical index error
ξA … atmospheric influence on distance measurements

A 3 × 3 covariance matrix Σpk , which reflects the uncer-
tainty of one measurement point (Xk ,Yk ,Zk), can be deter-
mined for every k = 1, 2,… ,N (with N the number of mea-
sured points) bymeans of the law of propagation of uncer-
tainty as

Σpk = F
T
kΣfac.kFk =

[[

[

u2Xk uXkYk uXkZk
uYkXk u2Yk uYkZk
uZkXk uZkYk u2Zk

]]

]

, (13)

where Fk is the Jacobian matrix containing the deriva-
tives of (Xk ,Yk ,Zk)with respect to the influence factors and
where

Σfac.k =

[[[[[[[[[[[[[[[[

[

u2Ik
u2k0k

u2m0k
u2θk

u2φk
u2ξθk

u2ξφk
u2ck

u2hk
u2ξA

]]]]]]]]]]]]]]]]

]

(14)
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6 | X. Zhao et al., Statistical evaluation of uncertainty budgets

denotes the VCM of the influence factors. Because the
range noise is considered together with the object-related
influences (see Section 2), the intensity-based uncertainty
uI is used in the calculations instead of the range noise ur
in Table 1.

Based on equation (7), the standard uncertainty for
one point in 3D is obtained. This procedure yields then the
uncertainty of the entire point cloud.

4 B-spline curve approximation
In light of their flexibility, accuracy, numerical stabil-
ity and structural simplicity, B-spline curves are popular
functions for approximating point clouds of geometrically
intricate objects, as well as for detecting (partly changing)
deformations and displacements of such objects. Former
applications to TLS in engineering geodesy have shown
that residuals resulting from B-spline curve approxima-
tions still contain random and systematic effects [3], aris-
ing from the sensor itself, from the surface structure of the
object, from the model, as well as from the environment.
These effects occur due to the lack of stochastic and un-
certainty information for the observations when B-Spline
estimation is carried out by means of the least squares
method. In this paper, such information will be included
in the estimation of B-splines via a refined VCM or weight
matrix based on the uncertainty budget stated in the pre-
vious two sections.

The setup of the B-Spline model largely follows the
description given by Piegl and Tiller [34] [see also 25, 8,
for further explanations and details]. Although we focus
in the sequel on the use of B-spline curves, an exten-
sion to surfaces would be straightforward [cf. 26, for a
detailed description of B-spline surfaces]. The basic idea
is to view the set of three-dimensional points on some
curve as values X( ̄u), Y(ū) and Z( ̄u) of real-valued func-
tions X, Y and Z on some interval (commonly taken to
be the unit interval [0, 1]). These coordinate functions are
usually parametrizedwith respect to given basis functions
f0,… , fn havingproperties that are beneficial to the tasks of
geometrical approximation and numerical computation.
Then, each point is represented by a row vector

C( ̄u) = [X(ū) Y(ū) Z(ū)]

= [
n
∑
i=0

fi(ū)Pi,X
n
∑
i=0

fi(ū)Pi,Y
n
∑
i=0

fi( ̄u)Pi,Z]

=
n
∑
i=0

fi(ū)Pi , (15)

where Pi = [Pi,X Pi,Y Pi,Z ] is the vector of component-

dependent (usually unknown) coefficients with respect to
the i-th basis function. The employment of power func-
tions u0,… ,un or Bernstein polynomials B0,p,… ,Bn,p as
basis functions yields a globally defined Bézier curve.
However, more suitable for our purposes are the p-th
degree basis (B-)splines N0,p,… ,Nn,p, which are defined
piecewise on the interval [0, 1], so that the resulting
B-spline curve adapts to geometrically varying objects
in a highly flexible manner. The B-spline coefficients
P0,… ,Pn, which are often called control points or de Boor
points, constitute 3D points themselves. Thus, any point
[X(ū) Y( ̄u) Z(ū)] onaB-spline curvemaybe viewedas a lin-
ear combination of the control points. The basis functions
can be evaluated (for every i ∈ {0,… ,n} and any ̄u ∈ [0, 1])
by the Cox-de Boor recursion formulas [cf. 34, Chapter 2]

Ni,0(ū) = {
1, if ui ≤ ̄u ≤ ui+1
0, otherwise

(16)

Ni,p(ū) =
ū − ui

ui+p − ui
Ni,p−1( ̄u) +

ui+p+1 − ̄u
ui+p+1 − ui+1

Ni+1,p−1(ū), (17)

which involve m + 1 so-called knots u0,… ,um, where m is
taken to be m = n + p + 1. One approach of defining these
knots is based on the equations

{{{
{{{
{

u0 =⋯ = up = 0,
up+j = (1 − k)ūi−1 + k ̄ui (j = 1, 2,… ,n − p),
un+1 =⋯ = um = 1

(18)

with i = int(jd), k = jd − i and d = m+1
n−p+1 [cf. 34,

p. 412]. The knots then give rise to the knot vector U =
[0,… ,0,up+1,… ,um−p−1, 1,… , 1]T .

GivenNmeasuredpoints [X1 Y1 Z1],… , [YN YN ZN ],we
may form the observation matrix

l = [[
[

l1
⋮
lN

]]

]

= [[

[

X1 Y1 Z1
⋮ ⋮ ⋮
XN YN ZN

]]

]

. (19)

The addition of a corresponding matrix of suitable resid-
uals v to the observation matrix yields the adjusted ob-
servations, which can be represented by the functional B-
splinemodel. This identification of themodelwith the (ad-
justed) observations requires that the individual B-splines
are evaluated for theN ‘locations’ ū1,… , ūN (in [0, 1]) asso-
ciated with themeasured points.We determine these loca-
tion parameters according to the standardmethod of chord
length, setting [cf. 34, Section 9.2]

̄uk =
{{
{{
{

0 if k = 1

ūk−1 +
√(lk−lk−1)T (lk−lk−1)

∑Nj=2√(lj−lj−1)T (lj−lj−1)
if k ≥ 2, (20)
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which gives for the last location parameter ūN = 1. These
evaluations turn (15) into the N observation equations

lk + vk = C(uk) =
n
∑
i=0

Ni,p(uk)Pi , (21)

which we write jointly in the form l + v = Ax with design
matrix

A = [[
[

N0,p(u1) ⋯ Nn,p(u1)
⋮ ⋮

N0,p(uN ) ⋯ Nn,p(uN )

]]

]

(22)

and unknown parameter matrix

x = [[
[

P0
⋮
Pn

]]

]

= [[

[

P0,X P0,Y P0,Z
⋮ ⋮
Pn,X Pn,Y Pn,Z

]]

]

(23)

We see now that (19)–(23) form the observation equations
of a multivariate Gauss-Markov model [cf. 23, Section 3.7],
for which the least-squares estimates of the unknown pa-
rameters x are readily obtained. If the X-, the Y - and the
Z-components of themeasured points are all mutually un-
correlated, then the multivariate model can be adjusted
by separately adjusting the three univariate Gauss-Markov
models that arise by considering only one particular col-
umn of l and the corresponding column within x. This
means that the data for each of the measured coordinate
components determines the estimates for the correspond-
ing coordinate component of the control points, indepen-
dently of the other coordinate components. The separa-
tion of the models implies also that component-wise ad-
justments are possible even in case the measured X-, Y -
and Z-coordinates have different covariance matrices ΣX ,
ΣY and ΣZ , as long as their inverses are used as metrics in
the formation of the corresponding normal equations, that
is, in the solution for the X-component

[[

[

̂P0,X
⋮
̂Pn,X

]]

]

= (ATΣ−1X A)−1ATΣ−1X
[[

[

X1
⋮
XN

]]

]

, (24)

the solution for the Y -component

[[

[

̂P0,Y
⋮
̂Pn,Y

]]

]

= (ATΣ−1Y A)−1ATΣ−1Y
[[

[

Y1
⋮
YN

]]

]

, (25)

and the solution for the Z-component

[[

[

̂P0,Z
⋮
̂Pn,Z

]]

]

= (ATΣ−1Z A)−1ATΣ−1Z
[[

[

Z1
⋮
ZN

]]

]

. (26)

5 Testing for heteroskedasticity

We will now outline two different approaches to testing
the validity of the covariance matrix of a linear Gauss-
Markov model with generic observation equations l + v =
Ax, whereA is an (n×m)-matrix of full rank. As a basic ref-
erence, we will consider a simple stochastic model in the
form of a homoskedastic covariance matrix

Σ0 = σ2I (27)

with generally unknown variance factor σ2. Furthermore,
we assume that the vector of observables follows a multi-
variate normal distribution.

5.1 A nested test for heteroskedasticity

The first testing approach addresses the question whether
a given data set provides sufficient evidence for rejecting
the simple, homoskedastic structure (27) in favor of some
heteroskedastic diagonal matrix

Σ = σ2I + γV, (28)

where σ2 and γ are treated as unknown parameters and
where V constitutes a given, non-negative diagonal ma-
trix; thus, the i-th variance can be written as the sum

σ2i = σ2 + γVii . (29)

The additive form (28) represents a possible decomposi-
tion of an arbitrary diagonal covariance matrix

Σ = diag(σ21 ,… ,σ2n), (30)

where σ2 is chosen to be the least variance within Σ.
Under the null hypothesis H0 ∶ γ = 0, Σ reduces to the

homoskedastic covariance matrix (27), whereas the alter-
native H1 ∶ γ > 0 imposes a heteroskedastic structure onto
σ2I according to the fully specified diagonal matrix V. Ev-
idently, the homoskedastic model under H0 represents a
special case of the heteroskedastic model (28) under H1,
so that the former is nested into the latter. Under the ini-
tial normality assumption, a reasonable and computation-
ally convenient test statistic can be based on Rao’s score.
More specifically, due to the assumed uncorrelatedness of
the observables, the log-likelihood function can bewritten
in the form

L(x,σ2,γ; l) = ln
n
∏
i=1

1
√2πσ2i

exp{− 1
2
(
Aix − li
σi
)
2
}
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8 | X. Zhao et al., Statistical evaluation of uncertainty budgets

= −
n
2
ln(2π) − 1

2

n
∑
i=1

ln(σ2 + γVii)

−
1
2

n
∑
i=1

(Aix − li)2

σ2 + γVii
. (31)

Introducing then for brevity of expressions the (n × 1)-vec-
tors 1 = [1⋯ 1]T ,

v̂ = [[
[

̂v1
⋮
̂vn

]]

]

= [[

[

A1x̂ − l1
⋮

Anx̂ − ln

]]

]

and

v̄ = [[
[

̄v1
⋮
̄vn

]]

]

= [[

[

( ̂v1/ ̂σ)2 − 1
⋮

( ̂vn/ ̂σ)2 − 1

]]

]

based on the restricted maximum likelihood estimates x̂,
̂σ2 = v̂′v̂/n and ̂γ = 0, Rao’s score statistic reads

TRS =
1
2
v̄′V1 (1′V [I − 1(1′1)−11′]V1)−1 1′Vv̄ (32)

and approximates a chi-square distribution with one de-
gree of freedom (χ21 ) for large numbers n of observations
[cf. 20, Section 4.3]. As the test is one-sided, the null hy-
pothesis of homoskedasticity is rejected if the test statistic
takes a value larger than the critical value kχ

2
1
1−α, where α is

the preset probability of committing a type-I error. In view
of the design of the test, this event is likely to happen if
the prescribed diagonal structure in V (and thus in Σ) is
reflected by the given data.

5.2 A non-nested discrimination test of
stochastic models

In case a heteroskedastic covariancematrix Σ is fully spec-
ified (as described in Section 3), it is actually neither nec-
essary to nest the null hypothesis (27) inside the refined
model (28), nor to treat σ2 and γ as unknown parame-
ters. For instance, we may specify σ2 to be the least vari-
ance of the heteroskedastic covariance matrix Σ (which
fixes σ2I) and choose nonnegative numbers in γV in such a
way that Σ is obtained. Instead of testing (27) versus (28),
we can therefore alternatively perform a model selection
test where the first model is based on the covariance ma-
trix (27) and the second model on the specified diagonal,
heteroskedastic covariance matrix Σ (without introducing
a parameter γ for the purpose of nesting decomposition).
The simple model describes the observables by means of

the log-likelihood function

L0(x,σ2; l) = ln
n
∏
i=1

1
√2πσ2

exp{− 1
2
(
Aix − li

σ
)
2
}

= −n
2
ln(2π) − n

2
ln(σ2) − 1

2

n
∑
i=1

(Aix − li)2

σ2
(33)

with unknown parameters θ0 = [x;σ2], and the refined
model is based on the log-likelihood function

L1(x; l) = ln
n
∏
i=1

1
√2πσ2i

exp{− 1
2
(
Aix − li
σi
)
2
}

= −
n
2
ln(2π) − 1

2

n
∑
i=1

ln(σ2i ) −
1
2

n
∑
i=1

(Aix − li)2

σ2i
(34)

with unknowns θ1 = x. Clearly, the unknown functional
parameters x are finite (real) numbers, and the variance
within the simple model is assumed to satisfy σ2 > 0 as
usual, so that all of the occurring parameters are inte-
rior points of the corresponding parameter spaces Θ0 =
ℝn+1 ×ℝ+ andΘ1 =ℝn+1. Furthermore, the homoskedastic
covariance matrix Σ0 and the heteroskedastic covariance
matrix Σ are numerically different, so that the observables
aremodeled by different sets of multivariate normal distri-
butions. Therefore, both distribution sets are non-nested
in the sense that none of the distributions of either set con-
stitutes a special case of the other set. Under the previous
assumptions, the logarithmized likelihood ratio

L0,1 = L0(x̂, ̂σ2; l) − L1(x̃; l) (35)

= −
n
2
ln( ̂σ2) + 1

2

n
∑
i=1

ln(σ2i ) −
1
2

n
∑
i=1

(Aix̂ − li)2
̂σ2

+
1
2

n
∑
i=1

(Aix̃ − li)2

σ2i
(36)

can be used to test the adequacy of the simple model
against the refined model [see the equations (15) and (46)
in 9]. Here, the maximum likelihood estimates x̂, ̂σ2 and
x̃may be obtained via least-squares adjustments [see Sec-
tion 3.2.4 23]. According to Cox [9, see the sections 8 and
9], the quantity L0,1 approximately follows a normal distri-
bution
(i) with expectation μ ̂θ0 and standard deviation σ ̂θ0 if the

homoskedastic model is true, as well as
(ii) with expectation μ ̃θ1 and standard deviation σ ̃θ1 if the

heteroskedastic model is true.

Consequently, standardizing the observed value L0,1 ac-
cordingly yields (approximately) standard normally dis-
tributed statistics T0 and T1 for carrying out two consec-
utive tests of the hypotheses
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(i) H0 ∶ the homoskedastic model is true
(ii) H1 ∶ the heteroskedastic model is true

at significance level (i.e., type-I error rate) α. It is beyond
the scope of the current paper to make an attempt to de-
rive the required quantities μ ̂θ0 , σ ̂θ0 , μ ̃θ1 and σ ̃θ1 analyti-
cally. Instead, we carried out a Monte Carlo simulation to
determine empirical arithmeticmeans and empirical stan-
dard deviations as consistent estimates of these moments,
given the least-squares estimates θ̂0 = [x̂; ̂σ2] and ̃θ1 = x̃
based on the measurements l. A similar simulation ap-
proach was previously applied byWilliams [41] in the con-
text of testing two types of functional models against each
other. Note that the expectations and standard deviations
that we simulate by means of Monte Carlo simulation are
unknown sincewe currently donot have analytical expres-
sions for them. The latter can, unfortunately, not be ob-
tained by normal variance propagation because the dif-
ference (35) is formed with the log-likelihoods L0 in (33)
and L1 in (34), which are the logarithms of normal distri-
butions.

Adapting this approach to our problem of testing two
competing stochastic models, we first generate a large
number M observation vectors by using the multivariate
normal distribution N(Ax̂, ̂σ2I). These samples are in turn
used to compute M samples of least-squares estimates
of θ0 = [x;σ2] in the homoskedastic model as well as M
samples of least-squares estimates of θ1 = x in the het-
eroskedastic model. Based on the sampled observation
vectors and parameter estimates, the corresponding log-
likelihood functions (33) and (34) are each evaluated M
times, resulting inM realizations of the logarithmized like-
lihood ratio (35). Under the current generatingdistribution
N(Ax̂, ̂σ2I), the empirical mean and standard deviation of
the sampled L0,1 constitute consistent estimates of μ ̂θ0 and
σ ̂θ0 , allowing us to compute the standardized statistic T0
with respect to the test of the homoskedastic model. Ad-
dressing next the test of the heteroskedastic model, we
generateM observation vectors from the multivariate nor-
mal distribution N(Ax̃,Σ) and compute again the least-
squares estimates for both models. Evaluation of the cor-
responding log-likelihood functions L0 and L1 at the sam-
pled observations and estimates gives us another M sam-
ples of L0,1, whose mean and standard deviation we es-
timate subsequently, as numerical approximations of μ ̃θ1
and σ ̃θ1 . We are thus in a position to calculate also the
statistic T1 (with respect to the test of the heteroskedastic
model). Wewill show in Section 6 that the sampled L0,1 for
both models are indeed closely described by normal dis-
tributions having the corresponding simulatedmeans and
standard deviations, as indicated earlier.

Cox [9] recommends to apply one-sided tests in the
sense that
(i) H0 is rejected if T0 < kN(0,1)α and
(ii) H1 is rejected if T1 > k

N(0,1)
1−α .

These two tests give rise to four possible, mutually exclu-
sive test decisions:
(i) The homoskedastic model is rejected and the het-

eroskedastic model is not rejected in case of

T0 < kN(0,1)α ∧ T1 ≤ k
N(0,1)
1−α . (37)

(ii) The heteroskedastic model is rejected and the ho-
moskedastic model is not rejected in case of

T0 ≥ kN(0,1)α ∧ T1 > k
N(0,1)
1−α . (38)

(iii) Both the homoskedastic and the heteroskedastic
model are rejected in case of

T0 < kN(0,1)α ∧ T1 > k
N(0,1)
1−α . (39)

(iv) Neither the homoskedastic nor the heteroskedastic
model are rejected in case of

T0 ≥ kN(0,1)α ∧ T1 ≤ k
N(0,1)
1−α . (40)

6 Numerical example
Based on the analysis steps in former sections, a numer-
ical example is analyzed. The aim of the application is
to detect the vertical displacements of a prestressed con-
crete bridge under load, which are induced by car traffic
and train crossings. The data were collected in the frame-
work of the interdisciplinary project “Application of life cy-
cle concepts to civil engineering structures” [described in
more detailed in 33] at the Leibniz Universität Hannover.
The geodetic contribution was to provide an independent
methodology for computing strain values derived from the
approximated deflections [32]. The bridge is an overpass
for several tracks and streets, connecting the city with the
adjoining villages. Its total width measures 14 m and the
width of the two mutual lanes is 10 m. The total length is
404.55 m segmented into 13 sections. In the third section,
denoted as MQ3, the TLS for this study was installed (see
the top part of Fig. 1 and Fig. 2). For the measurements,
the TLSwas positioned under themiddle of the bridge seg-
ment and aligned along themain axis (Y-axis) of the bridge
(see Fig. 2 red dotted line) so that the outside bottom of the
box beam could be scanned at the shortest distance (in the
direction of the Z-axis) of 4.7 m. As measuring type the 2D
profile mode was chosen with a sampling interval of 0.08
seconds per profile, which corresponds to a sampling rate
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10 | X. Zhao et al., Statistical evaluation of uncertainty budgets

Figure 1: Bridge structure longitudinal section (above), cross section (below) [32].

Figure 2: Layout of the measurement setup-bridge section at MQ3, TLS station (blue-gray) and the profile direction (red dotted line) in coor-
dinate system [32].

of 12.5 Hz. The point sampling rate was 500,000 points per
second and results in 2,539 points within each profile.

6.1 The observation model

Because the 2Dmodewas chosen in our specific numerical
example, only Y- and Z-coordinates including their uncer-
tainties are considered (the X-coordinates were all identi-
cal to 0). Furthermore, the correlations between the mea-
sured Y- and Z-coordinates are neglected. Consequently,
the X-coordinates of the estimated control points of any
B-spline model approximating these data are also iden-
tical to 0 in view of (24). It therefore suffices to consider
(11) and (12) as models for correcting the measured Y- and
Z-coordinates. Thus, the pointwise covariance matrix (13)
can be reduced to

Σpk = [
u2Yk 0
0 u2Zk

] . (41)

Reducing the Jacobianmatrix Fk accordingly and splitting
it into the two parts FY ,k and FZ,k with respect to the re-
maining two coordinate components, we find that u2Yk and
u2Zk can be calculated separately by

u2Yk = F
T
Y ,kΣfac.kFY ,k , (42)

u2Zk = F
T
Z,kΣfac.kFZ,k . (43)

The uncertainties caused by the collimation axis error
and the horizontal axis error in Σfac.k can be excluded
since there is no horizontal rotation angle influence on
Z-coordinates. Thus, the component-wise Jacobian matri-
ces read

FTY ,k = [
𝜕Yk
𝜕r
,
𝜕Yk
𝜕k0
,
𝜕Yk
𝜕m0
,
𝜕Yk
𝜕ξA
,
𝜕Yk
𝜕θ
,
𝜕Yk
𝜕ξθ
,
𝜕Yk
𝜕ξv
]

FTZ,k = [
𝜕Zk
𝜕r
,
𝜕Zk
𝜕k0
,
𝜕Zk
𝜕m0
,
𝜕Zk
𝜕ξA
,
𝜕Zk
𝜕θ
,
𝜕Zk
𝜕ξθ
,
𝜕Zk
𝜕ξv
]
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Figure 3: Standard uncertainty of Z-coordinates and individual contributions to its magnitude.

{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝜕Yk
𝜕r
= (1 + k0) ⋅ sin(θk + ξθ + ξv)

𝜕Yk
𝜕k0
= rk ⋅ sin(θk + ξθ + ξv)

𝜕Yk
𝜕m0
= sin(θk + ξθ + ξv)

𝜕Yk
𝜕ξA
= sin(θk + ξθ + ξv)

𝜕Yk
𝜕θ
= (rk ⋅ (1 + k0) +m0 + ξA) ⋅ cos(θk + ξθ + ξv)

𝜕Yk
𝜕ξθ
= (rk ⋅ (1 + k0) +m0 + ξA) ⋅ cos(θk + ξθ + ξv)

𝜕Yk
𝜕ξv
= (rk ⋅ (1 + k0) +m0 + ξA) ⋅ cos(θk + ξθ + ξv)

(44)

{{{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{{{
{

𝜕Zk
𝜕r
= (1 + k0) ⋅ cos(θk + ξθ + ξv)

𝜕Zk
𝜕k0
= rk ⋅ cos(θk + ξθ + ξv)

𝜕Zk
𝜕m0
= cos(θk + ξθ + ξv)

𝜕Zk
𝜕ξA
= cos(θk + ξθ + ξv)

𝜕Zk
𝜕θ
= −(rk ⋅ (1 + k0) +m0 + ξA) ⋅ sin(θk + ξθ + ξv)

𝜕Zk
𝜕ξθ
= −(rk ⋅ (1 + k0) +m0 + ξA) ⋅ sin(θk + ξθ + ξv)

𝜕Zk
𝜕ξv
= −(rk ⋅ (1 + k0) +m0 + ξA) ⋅ sin(θk + ξθ + ξv)

(45)

Having computed the covariance matrix (41), we are now
in a position to set up the component-wise covariance ma-

trices ΣY and ΣZ in order to determine the solutions (25)–
(26) for the control points.

Consequently, the covariancematrix Σ, is reduced to a
simple block matrix (24) comprising only the uncertainty
of Y-and Z-coordinates.

ΣY = diag(u2Y1 ,… ,u
2
YN ), (46)

ΣZ = diag(u2Z1 ,… ,u
2
ZN ). (47)

6.2 Evaluation of the results

This section gives the results for the aforementioned
numerical example. According to the uncertainty bud-
get given in Section 2, the standard uncertainties of the
Z-coordinates are shown jointly with the individual uncer-
tainty factors in Fig. 3. It can be concluded that instrumen-
tal influences, e.g., the uncertainties of the zero point er-
ror, the object-related influence, the angle noise and the
vertical index error, play adominant role. The atmospheric
uncertainty, which is in micrometer range, is too tiny to
show in this figure. The same characteristics are found
with respect to the Y -coordinates.

We used the resulting covariance matrices (46)–(47)
as the stochastic model in a multivariate Gauss-Markov
model to approximate the measured profile by a B-spline
model, as shown in Section 4. In addition, we carried out
the same adjustment using the homoskedastic covariance
matrix (27) as the stochastic model. The chosen parame-
ters for the B-Spline are in both cases fixed to p = 3 and
n = 30. The resulting two adjusted B-spline models are
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12 | X. Zhao et al., Statistical evaluation of uncertainty budgets

Figure 4: Estimated B-splines based on the heteroskedastic model (green) and based on the homoskedastic model (red), shown for the
entire profile and for a short segment in the left part of the profile (see the zoomed area). The corresponding control points as well as the
measured data are also displayed (in red and green, respectively); the measurements are indicated by black crosses.

Figure 5: Difference between the two estimated B-spline curves in comparison to the estimated residuals of the B-spline model based on the
homoskedastic covariance matrix, shown with two different scales for the Y - and Z-coordinates.

shown in Fig. 4 (for the entire profile and for a selected
window within the left part of the profile). It can be seen
that both estimated B-spline models coincide almost per-
fectly in the center of the profile and to a lesser extent at
the edges.

Figure 5 shows on the one hand the estimated resid-
uals for the B-spline model based on the unit covariance
matrix, and on the other hand the difference between the
twoestimatedB-splinemodels. The residuals are generally
one magnitude larger than the model differences. Further-
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X. Zhao et al., Statistical evaluation of uncertainty budgets | 13

Figure 6: Histogram of the sampled log-likelihood differences L0,1 under the homoskedastic (left) and heteroskedastic model (right), approx-
imated by a Gaussian density functions (in red).

more, the model differences in the Z-component are sig-
nificantly larger than in the Y -component.

In order to test if the refined stochastic model (46)–
(47) has a significant and beneficial influence on the
B-spline estimation, we evaluated first the test statistic
(32). Comparison with the critical value at the type-I error
rate α = 0.05 leads to the rejection of the null hypothesis
that γ = 0 is true (see Table 3). Thus, the given measure-
ments l suggest the inadequacy of the homoskedastic co-
variance matrix (27).

Table 3: Result for the nested test for heteroskedasticity (“Test 1”)
for the measured profile.

TRS kχ
2(1)

0.95 rejected
18.57 3.84 homoskedastic model (H0)

We can however not automatically infer from the pre-
ceding test result that the heteroskedastic covariance ma-
trix (30) is correct since the null hypothesis could in princi-
ple have been rejected also for other heteroskedastic mod-
els. Therefore, we carried out in addition the non-nested
discrimination test described in Section 5.2 (see Table 4).
On the one hand, since T0 is less than the α-quantile of
N(0, 1), the homoskedastic model is rejected. On the other
hand, T1 takes a large positive value, so that the specific
heteroskedastic model (30) should also be rejected.

Figure 6 demonstrates that the 10,000 sampled log-
likelihood differences (35) approximately follow a Gaus-
sian distribution both under the simple and under the re-
fined stochastic model. Thus, it is justified to standard-
ize the log-likelihood difference computed from the actual
measurements bymeans of the samplemeanand standard

Table 4: Results for the two non-nested model discrimination tests
(“Test 2a” and “Test 2b”) for the measured profile.

T0 kN(0,1)0.05 rejected
−3.27 −1.64 homoskedastic model

T1 kN(0,1)0.95 rejected
22.24 1.64 heteroskedastic model

Table 5: Rejection rates for the nested and the non-nested tests with
respect to all 376 measured profiles.

Test Test 1 Test 2a Test 2b

Rejection rate 0.65 0.40 1.00

deviation under each of the two stochastic models (result-
ing in the values for T0 and T1 as shown in Table 4).

In order to assess whether the test results obtained
for the specific profile is representative, the tests were re-
peated for 375 further profiles. Table 5 shows the rejection
rates for the nested heteroskedasticity test (“Test 1”) and
for the two non-nested model discrimination tests (“Test
2a” and “Test 2b”). The homoskedastic model is rejected
in 65% of the cases by the first test and in 40% of the cases
by the second test. Thus, Test 1 rejects that model for an
additional 25% of the profiles, which shows that the two
test procedures are not equivalent. In all cases, the speci-
fiedheteroskedasticmodelwas rejectedby the second test.
We also determined the rejection rate for the event that
both tests concurrently reject the homoskedastic model.
We found that the non-nested test did not confirm the re-
jection of the homoskedastic model by the nested test in
only 4% of the cases. Therefore, we may conclude that
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14 | X. Zhao et al., Statistical evaluation of uncertainty budgets

rejection of the homoskedastic model by the non-nested
test practically implies the rejection of that model by the
nested test.

In summary, we see from the application of the previ-
ous hypothesis tests that both the homoskedastic and the
specific form of heteroskedastic model are inadequate. As
the large rejection rate of the nested test points towards ac-
cepting the alternative hypothesis γ > 0, it is possible that
a rescaling of the heteroskedastic diagonal covariancema-
trix by some (currently unknown) γ-value leads to a more
realistic stochastic model. But this work should be carried
out in the future research.

7 Conclusion and outlook

In this paper, an extended uncertainty budget for terres-
trial laser scanning (TLS) measurements, based on the
Guide to the Expression of Uncertainty in Measurement
(GUM), was investigated in the context of bridge measure-
ments in 2D profile mode. It was shown for short-range
measurements that instrumental and object-related influ-
ences play a dominant role in comparison to atmospheric
influence. The extended uncertainty budget was used to
derive covariance matrices for the Y - and Z-coordinates.
These covariance matrices served as the stochastic model
within a multivariate Gauss-Markov model, which was
used to approximate the measured bridge profile by a B-
spline model. The same adjustment was also made by
employing simple, homoskedastic covariancematrices for
the stochastic model. The two resulting B-spline models
were shown to coincide closely in the central part of the
profile, and to coincide to a lesser extent in the edges of
the profile. The model differences turned out to be one
magnitude smaller than the estimated residuals with re-
spect to the homoskedastic model, indicating insignifi-
cant differences between the two B-spline curves. The ef-
fect of the extended, heteroskedastic covariancematrix on
the adjustment was also assessed by means of two test-
ing procedures. The first procedure was based on Rao’s
score statistic in order to test the homoskedastic model
against an unspecified multiple of a fully specified diag-
onal matrix, which was constructed from the extended
uncertainty budget. The second procedure tests the ho-
moskedastic and the fully specified heteroskedasticmodel
independently against each other,where eachmodel takes
the role of the null hypothesis once and the other model
the role the alternative. The two testing procedures led to
the rejection of both the simple homoskedastic and the ex-
tended heteroskedastic models. The tests were repeated

in total for 376 measured profiles; the simple stochastic
model was rejected in the majority of cases, and the ex-
tended model was rejected in all cases. We can therefore
conclude that both forms of stochastic model are inad-
equate. The presented testing procedures will in the fu-
ture be used to validate further attempts at improving the
stochastic model for TLS measurements. The correlations
of the influences and the measurements will also be con-
sidered since the currently used stochasticmodel is not re-
alistic in this regard. These improvementswill require con-
siderable extensions of the B-spline estimation and testing
procedure. Moreover, we intend to apply the extensions
to GUM concerning the Monte Carlo propagation of uncer-
tainties in order to further evaluate the stochastic model-
ing approach based on GUM, and to enable realistic com-
parisons to the approach based on synthetic covariance
matrices.
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Abstract: Deformation monitoring of structures is a common application and one of the major
tasks of engineering surveying. Terrestrial laser scanning (TLS) has become a popular method
for detecting deformations due to high precision and spatial resolution in capturing a number of
three-dimensional point clouds. Surface-based methodology plays a prominent role in rigorous
deformation analysis. Consequently, it is of great importance to select an appropriate regression
model that reflects the geometrical features of each state or epoch. This paper aims at providing
the practitioner some guidance in this regard. Different from standard model selection procedures
for surface models based on information criteria, we adopted the hypothesis tests from D.R. Cox
and Q.H. Vuong to discriminate statistically between parametric models. The methodology was
instantiated in two numerical examples by discriminating between widely used polynomial and
B-spline surfaces as models of given TLS point clouds. According to the test decisions, the B-spline
surface model showed a slight advantage when both surface types had few parameters in the first
example, while it performed significantly better for larger numbers of parameters. Within B-spline
surface models, the optimal one for the specific segment was fixed by Vuong’s test whose result was
quite consistent with the judgment of widely used Bayesian information criterion. The numerical
instabilities of B-spline models due to data gap were clearly reflected by the model selection tests,
which rejected inadequate B-spline models in another numerical example.

Keywords: terrestrial laser scanning; surface modeling; B-spline; polynomial; Gauss-Markov model;
simulation-based Cox’s test; Vuong’s test

1. Introduction

Deformation monitoring of engineering structures such as bridges, tunnels, dams, and tall buildings
is a common application of engineering surveying [1]. As summarized in Mukupa et al. [2], deformation
analysis can be based on different comparison objects, namely, point-to-point, point-to-surface, or
surface-to-surface. The point-to-point-based analysis is a common approach to describe deformations
that are captured by conventional point-wise surveying techniques. Examples of such techniques are
the total station and the global navigation satellite system; however, in many cases, these have been
surpassed by the use of LiDAR technology, especially terrestrial laser scanning (TLS) [3,4]. Although
the single-point precision of TLS is in the sub-centimeter range (±2 to±25 mm), the high redundancy of
the scanning observations facilitates a higher precision via the application of least-squares based curve
or surface estimation and, hence, an adequate precision of the estimated deformation parameters [5].
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A point-to-surface-based analysis is carried out to represent a deformation by the distance between
the point cloud in one epoch and the surface estimated from measurements in another epoch.
Such a surface can be constructed as a polygonal model (mesh) [6–8] or as a regression model
(e.g., a polynomial or B-spline surface model) [9–13]. The procedure of a surface-to-surface-based
deformation analysis, which is appropriate in certain situations, is to divide the point clouds into
cells and to compare the parameters of fitted planes based on cell points in two epochs. This method
is applied in Lindenbergh et al. [14], where the different positions of the laser scanner and strong
wind contribute to the change of the coordinate system. The aforementioned three approaches to
deformation analysis are complemented by the “point-cloud-based” approach, in which a deformation
is reflected by the parameters of a coordinate transformation between sets of point clouds in various
epochs. The common algorithm for determining the transformation matrix is the iterative closest
point algorithm. The authors of Girardeau-Montaut et al. [15] presented three simple cloud-to-cloud
comparison techniques for detecting changes in building sites or indoor facilities within a certain time.

Aiming at rigorous deformation detection from scatter point clouds, it is crucial to describe
the geometrical features of the object accurately by an appropriate curve or surface regression
model, and emphasis is put on the latter model in this paper. The purpose of surface fitting is
to estimate the continuous model function from the scatter point samples, which can be implemented
by approximation in the case of redundant measurements. There are many approximation approaches
for working with surfaces based on an implicit, explicit, or parametric form. Parametric models are
usually employed to fit point cloud data in applications such as deformation monitoring and reverse
engineering. Different parametric models perform differently in terms of accuracy and number of
coefficients when fitted to a dataset. Among the many methods utilized in various applications for
approximating point clouds, polynomial model fitting is usually applied to smooth and regular objects
due to its simple operation. In [16], the authors assumed a concrete arch as regular and analyzed
the deformation behavior through comparing fitted second-degree polynomial surfaces. The more
involved fitting of B-splines and non-uniform rational basis splines is often preferred for modeling
geometrically complicated objects. In this context, much research has focused on the optimization of
the mathematical and stochastic models. In Bureick et al. [17], the authors optimized free-form curve
approximation by means of an optimal selection of the knot vector. Furthermore, in Harmening and
Neuner [18], the authors improved the parametrization process in B-spline surface fitting by using
an object-oriented approach instead of focusing on a superior coordinates system, thereby enabling
the generated parameters to reflect the features of the object realistically. Moreover, in Zhao et al. [19],
the authors suggested a new stochastic model for TLS measurements and used the resulting covariance
matrix within the least-squares estimation of a B-spline curve.

The need for model selection and statistical validation was emphasized in Wunderlich et al. [20],
the authors of which described the deficiencies in current areal deformation analysis and presented
possible strategies to improve this situation. Typically, the selection of surface model depends on the
object features—for example, whether the surface is regular or irregular. However, in most cases, it is
unclear whether the object is smooth enough to be described by a simple model (e.g., as a low-order,
global polynomial surface) or not. This limitation serves as the motivation for discriminating between
estimated surface models in order to select the most appropriate one. In the context of model selection,
Harmening and Neuner [21,22] investigated statistical methods based on information criteria and
statistical learning theory for selecting the optimal number of control points within B-spline surface
estimation. Another possibility is to compare the (log-)likelihoods of competing models directly
by means of the general testing principle by D.R. Cox [23]. In Williams [24], the authors improved
the Cox’s test based on the use of Monte-Carlo simulation, which is straightforward to implement.
This kind of test has already been used in Zhao et al. [19] to select the best fitting stochastic model
for B-spline curve estimation. In Vuong [25], the authors use likelihood-ratio-based statistics to
discriminate the competing models based on Kullback–Leibler information criterion. Such hypothesis
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tests offer the advantage that significant probabilistic differences between models can be detected,
which is information that has not been provided by the methods mentioned previously.

The motivation of this paper lies in the selection of the most parsimonious, yet sufficiently
accurate, parametric description of structure based on TLS measurements, whose model is applied to
reflect the surface-based deformation of measured objects. Different from standard model selections
procedures based on information criteria, we introduce two likelihood-ratio tests from D.R. Cox and
Q.H. Vuong, which are instantiated in numerical examples to discriminate statistically between
widely used polynomial and B-spline surfaces as models of given TLS point clouds. The selected
surface model’s performance in reflecting deformation is compared with the result of the block-means
approach. The paper is organized as follows. In Section 2, the methodology of surface approximation
and model selection is reviewed and explained. This methodology is instantiated in two numerical
examples by discriminating between widely used polynomial and B-spline surfaces. The evaluation of
approximated surface models as well as their performance in deformation analysis are given as results
in Section 3. The subsequent Section 4 provides a further discussion on the results and a comparison
with results obtained by some well-known penalization information criterion approaches. Finally,
conclusions are drawn in Section 5.

2. Methodology

2.1. Experiment Design

An experiment was conducted jointly with the Institute of Concrete Construction of the
Leibniz Universität Hannover to probe the load-caused behavior and ultimate bearing capacity of a
concrete arch structure with a length of about 2 m and thickness of 0.1 m. Loads were placed on top of
the arch’s surface for 13 epochs, within which the load was exerted with a uniform speed (2 kN/min)
of about 20 min followed by a break of approximately 10 min for data capture [9]. The weight of load
was increased continuously and reached 520 kN at the end of the 13th epoch.

A multi-sensor-system (MSS) consisting of a TLS (here Z+F Imager 5006), laser tracker
(here Leica AT960LR) and digital camera (here Nikon D750) were used to acquire the data from
the deformable arch structure. The positions of the MSS relative to the arch structure are shown in
Figure 1 (see also [16]). TLS data were acquired in “super high” resolution mode with normal quality.
The vertical and horizontal resolution was 0.0018◦ and vertical and horizontal accuracy was 0.007◦ rms.
The TLS scanned the top and the side surfaces of the arch. The laser tracker was used as a reference
sensor for the validation purpose, which allows sub-millimeter accuracy with a maximum permissible
error of 15 µm + 6 µm/m [26]. In addition, a digital camera was used to capture the feature points
with a high resolution (thus exploiting their strength in discrete feature point extraction). Targets
were mounted in the surroundings and on the arch (see Figure 1) to perform the external calibration
between the sensors.

Among various datasets, the focus of this literature lies in capturing the data by the TLS to use
a large number of 3D point clouds with a high accuracy in approximating a surface model, which is
important in rigorous deformation monitoring. In our experiment, the top surface of the arch is of
great interest since it is under load pressure in the consecutive 13 epochs and has obvious movements
compared to the other parts of the structure. However, as can be seen from Figure 1, the top surface is
partially occluded by the steel beams. Consequently, it is necessary to extract the top-surface points
in order to enable an accurate surface model. As a preliminary step to separate the obstructions and
the arch-shape part of the object, the reflectance image was generated by using the reflectivity values
of the raw TLS data. It was performed by assigning the reflectivity values of each point cloud to one
pixel based on the scan resolution [27] (see Figure 2). Since the occluded objects such as the beams
on top of the arc shape object were darker compared to the arc shape part, it could be discarded by
means of the OpenCV threshold function and by setting the threshold value manually to 80 from a
range of 0–255. Therefore, those values greater than 80 were set to 0. However, before performing the
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thresholding, OpenCV GaussianBlur function with a size of 5 was applied to reduce the image noise.
Next, the morphological opening and closing filters were applied to discard the very small segments.
As previously, the position and orientation of the global coordinate system was defined in Figure 1,
the Z-axis was in the zenith direction. Therefore, the Pass Through filter of the Point Cloud Library was
applied to cut off those 3D point clouds below or greater than the predefined threshold in the Z-axis
direction. Then the “setFilterLimits” member function of this filter was set to (−4.50 m, −3.75 m) to
select the 3D point clouds within the boundaries. Subsequently, the StatisticalOutlierRemoval filter of
the Point Cloud Library was applied to remove the outliers of the 3D point clouds. In this filter, the k
nearest neighbor points were used to estimate the mean distance. Therefore, its “setMeanK” member
function was set to 20. Next, the “setStddevMulThresh” member function of this filter was set to 3.0 to
reject the outliers by means of the 3σ test. The extracted arch surface data is shown in Figure 3. As an
example, only two representative segments of the point cloud within the red boundary are separately
investigated since the middle area has significant deviations compared to the other parts of the surface.
The same methodology is applicable in modeling other segments.

Figure 1. Sketch map of the experimental design concerning the locations of the instruments and
relevant targets in side view (upper) and top view (bottom) [16].

Figure 2. Reflectance image generated by reflectivity values of TLS data [16].



Remote Sens. 2018, 10, 634 5 of 22

Figure 3. Extracted Arc-shape object and the target segments in our numerical example (within the
red boundary) shown by the software CloudCompare.

2.2. Surface Approximation

In surface-based deformation analysis, an appropriate surface model is required as a
representation of each deformation status. Among the various parametric models, polynomial surface
fitting are the most common approach due to its easy implementation [9,16], while free-form surfaces,
especially B-splines, have become relevant to deformation analysis due to their capacity to accurately
model more detailed geometrical features including sharp edges, cusps, and leaps [28]. The functional
relationships behind B-splines and polynomials, as two of the most commonly used types of surface
model, as well as the corresponding approximation steps, are described in this subsection.

2.2.1. B-Spline Surface Approximation

The mathematical description of a 3D point

S = [X Y Z] =
n

∑
i=0

m

∑
j=0

Ni,p(ū)Nj,q(v̄)Pi,j (1)

on a B-spline surface is based on the bidirectional combination of basis functions Ni,p(ū), Nj,q(v̄) and
3D control points Pi,j = [PXi,j PYi,j PZi,j ], which are located on a bidirectional net with the number of
n + 1 and m + 1 in u- and v-directions.

B-spline surface approximation builds upon B-spline curve fitting in the two directions.
Following Bureick et al. [17], this procedure can be carried out in three steps:

1. Parametrization of the measurements with s rows and t columns with respect to the u- and
v-direction.

2. Determination of the knot vectors U and V in the u- and v-direction.
3. Estimation of the control points by means of a linear Gauss–Markov model.

The first two steps consist of the parameterization and computation of knot vectors, which serve
as input parameters for the final estimation. Since the calculation of B-spline parameters are beyond
the scope of this paper, the interested reader is referred to Bureick et al. [17] and Piegl and Tiller [29].

The final step of B-spline approximation is to estimate the positions of the control points, which is
done essentially by adjusting a linear Gauss–Markov model (cf. [29,30]). Given measured points
located on a grid defined by s rows and t columns, they also can be arranged in matrix form as
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l =




l1
...

ls·t


 =




X1 Y1 Z1
...

...
...

Xs·t Ys·t Zs·t


 . (2)

The addition of a corresponding matrix v of residuals to the observation matrix yields the adjusted
observations, which can be represented by the functional B-spline model in Equation (1). We thus have
for a particular observation the equation

lkukv + vkukv = S =
n

∑
i=0

m

∑
j=0

Ni,p(ūku)Nj,q(v̄kv)Pi,j (3)

where ku = 2, ..., s and kv = 2, ..., t. We can write all of the equations jointly in the form l + v = A0x
with a design matrix within which the basis functions Ni,p(ū), Nj,q(v̄) are calculated based on the
parameterization and knot vectors

A0 =




N0,p(ū1) · N0,q(v̄1) · · · Nn,p(ū1) · Nm,q(v̄1)
...

...
N0,p(ūs) · N0,q(v̄t) · · · Nn,p(ūs) · Nm,q(v̄t)


 (4)

and (unknown) parameter matrix x. We assume all of the measured point coordinates to have identical
accuracies and to be uncorrelated, so that we obtain for the least squares estimates of these parameters:

x̂ =




P̂X0,0 P̂Y0,0 P̂Z0,0
...

...
...

P̂Xn,m P̂Yn,m P̂Zn,m


 = (AT

0 A0)
−1AT

0 l. (5)

2.2.2. Polynomial Surface Approximation

Denoting a generic surface point by S = (X, Y, Z), the Z-component can be expressed as the
two-fold linear combination

Z =
p

∑
i=0

q

∑
j=0

ai,jXiY j = a0,0 + a1,0X + a0,1Y + a2,0X2 + a1,1XY + a0,2Y2 + . . .

+ ap,0Xp + ap−1,1Xp−1Y + . . . + a1,q−1XYq−1 + a0,qYq (6)

where a = [a0,0, a1,0, . . . , ap,q] is the coefficient vector having (p + 1)(q + 1)− 1 elements, and where
p and q represent the polynomial degrees with respect to the X- and Y-components, respectively.

Polynomial surface fitting consists of the estimation of the coefficient vector a, which we carry out
again in the least-squares sense by minimizing the sum of squared (“vertical”) residuals

Ω2 =
N

∑
n=1

(ln −
p

∑
i=0

q

∑
j=0

ai,jXi
nY j

n)
2 (7)

where l = [l1, l2, ..., lN ] is now an observation vector consisting of the N measured Z-coordinates.
The design matrix

A1 =




X0
1 ·Y0

1 · · · Xi
1 ·Y

j
1 · · · Xp

1 ·Y
q
1

...
...

X0
N ·Y0

N · · · Xi
N ·Y

j
N · · · Xp

N ·Y
q
N


 (8)
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is computed by exponentiation (where i = 0, 1, 2, . . . , p, j = 0, 1, 2, . . . , q) and multiplication of
the X- and Y-components, which are considered as error-free. Under the assumption again of
homoskedastic and uncorrelated measurements, the estimated parameters are given by

x̃ =




ã0,0
...

ãp,q


 = (AT

1 A1)
−1AT

1 l. (9)

2.2.3. Parameter Number of Competing Models

The approximation quality of a surface model is related to its complexity embodied in the number
of parameters. Hence, when choosing pairs of models to be compared, we should pay attention to the
parameter numbers.

In the initial comparison, the target segments of the point cloud of the first epoch are modeled
by means of polynomial and B-spline surface functions with similar numbers of parameters in order
to minimize the effect of model complexity. As the most basic description of a surface, the second
degree polynomial function (p = q = 2) with six unknown parameters is approximated. A B-spline
surface with the same parameter number (n = 1, m = 2) is modeled as a competitor. In order to
facilitate a comprehensive analysis, polynomial functions of higher degrees are adjusted and compared
to other estimated B-spline surface models. According to the general polynomial model Equation (6),
a third-degree polynomial model is based on the specification of p = q = 3, resulting in 10 unknown
parameters to be estimated. It is reasonable to compare this model with the adjusted B-spline surface
involving nine parameters (m = n = 2). Further comparisons are carried out between the fourth-degree
polynomial and B-spline surface models with 15 and 16 unknown parameters, respectively. Table 1
lists the candidate surface models mentioned above, where Npoly and NB represent the number of
parameters of the polynomial and of the B-spline models, respectively.

Table 1. The numbers of parameters for the various employed polynomial and B-spline surface models.

Pairs
Polynomial Model B-Spline Model

Degree Npoly n, m NB

I 2nd 6 n = 1, m = 2 6
II 3rd 10 n = 2, m = 2 9
III 4th 15 n = 3, m = 3 16

It should be mentioned that polynomial functions of degrees higher than four are useless in
our numerical example, since the resulting normal equation matrices within parameter estimation
Equation (9) would be ill-conditioned. In this case, on the one hand, it is quite interesting to compare
the best-fitting fourth-degree polynomial model with a higher-quality yet more complex B-spline
surfaces when considering the complexity of models as penalization. It is predicted that the latter
would be superior to the former in initial comparison pairs, but the superiority is expected to be offset
by penalization due to increasing parameters. The comparison results of Segment I will be presented
in Section 3.1 in Table 3 and in Appendix in Table A1. It helps to judge in which situation the B-spline
models are recommended compared with the polynomial model. On the other hand, in practice,
among the recommended B-spline models, we need the optimal one for further deformation analysis,
which motivates the comparison within B-spline models. The comparison results of Segment I will be
shown in Section 3.2 in Table 5 and in Appendix in Table A2.

2.3. Model Selection Method

The aim of model selection is to find a balance between the parsimony of the model and its
approximation quality [21]. Unlike the trial-and-error procedures and information theoretic criterion
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model selection approaches, we adopt the likelihood-ratio-based hypotheses testing framework to
discriminate between the competing models. The likelihood ratio tests are generally used to compare
two nested models; however, in our case, the polynomial surface model and B-spline model are
non-nested because neither model can be reduced to the other by imposing a set of parametric
restrictions or limiting process.

Regarding the non-nested models selection problem, in Cox [23] and Vuong [25], the authors
proposed respective approaches to extend the likelihood ratio test into non-nested cases. In this
subsection, both a simulation-based version of Cox’s test and Vuong’s test, which will be instantiated
later with the experiment data, are explained.

2.3.1. Simulation-Based Version of Cox’s Test

Under the assumption of normally distributed, uncorrelated and homoskedastic random
deviations, the observation models can be defined in terms of the generic log-likelihood function

L(x, σ2; l) = ln
N

∏
n=1

1√
2πσ2

exp

{
−1

2

(
ln −Anx

σ

)2
}

= −N
2

ln(2π)− N
2

ln(σ2)− 1
2

N

∑
n=1

(ln −Anx)2

σ2 (10)

where the variance factor σ2 is treated as an unknown parameter alongside the functional parameters.
Let us define L0(x, σ2; l), and L1(x, σ2; l) to be the specific log-likelihood functions with respect to the
design matrices Equations (4) and (8), respectively. Both types of design matrix define different types
of functions where neither is a special case of the other one. Thus, the two sets of multivariate normal
distributions defined by L0 and L1 are non-nested, so that the likelihood ratio test cannot be applied in
its usual form ([31] cf.) (pp. 276–278).

According to Cox [23], we may, however, use the logarithmized likelihood ratio

L0,1 = L0(x̂, σ̂2; l)− L1(x̃, σ̃2; l)

= −N
2

ln(σ̂2)− 1
2σ̂2

N

∑
n=1

(ln −A0nx̂)2 +
N
2

ln(σ̃2) +
1

2σ̃2

N

∑
n=1

(ln −A1nx̃)2 (11)

for testing the adequacy of the polynomial model against the B-spline model. Note that the substituted
least squares solutions Equations (5) and (9) are identical to the maximum likelihood estimates;
furthermore, the two occurring maximum likelihood estimates of the variance factor σ2 are given by
σ̂2 = 1

N ∑N
n=1(ln −A0nx̂)2 and σ̃2 = 1

N ∑N
n=1(ln −A1nx̃)2 ([31] cf.) (pp. 161). The statistic L0,1 follows

approximately a normal distribution

1. with certain expectation µ0 and standard deviation σ0 if the polynomial model is true, and
2. with certain expectation µ1 and standard deviation σ1 if the B-spline model is true.

Thus, we may calculate the approximately standard normally distributed statistics T0 = (L0,1− µ0)/σ0

and T1 = (L0,1− µ1)/σ1 for carrying out two separate tests of the hypotheses—

1. H0 : the polynomial model is true;
2. H1 : the B-spline model is true—

at significance level α. We may determine the means µ0 and µ1 as well as the standard deviations
σ0 and σ1 conditionally on the two parameter solutions (x̂, σ̂2), and (x̃, σ̃2) through a Monte Carlo
simulation in analogy to the approach taken in Williams [24].

According to that approach, we start by generating a large number M of observation vectors
l(1), . . ., l(M) randomly from the N-dimensional Gaussian distribution N(Ax̂, σ̂2IN). Based on these
samples, we compute the corresponding solutions (x̂(1); σ̂(1)), . . ., (x̂(M); σ̂(M)) with respect to the
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polynomial model and (x̃(1); σ̃(1)), . . ., (x̃(M); σ̃(M)) with respect to the B-spline model. We use the first
solution set to evaluate the corresponding log-likelihood functions L(1)

0 , . . ., L(M)
0 , and the second set

to evaluate L(1)
1 , . . ., L(M)

1 , so that we may compute the realizations L(1)
0,1 , . . ., L(M)

0,1 of Equation (11).
Thus, the arithmetic mean and empirical standard deviation of these sampled logarithmized likelihood
ratios serve as estimates of µ0 and σ0, leading to the standardized Gaussian test statistic T0 under the
currently assumed polynomial model.

The second test statistic T1 (with respect to the test of the B-spline model) is computed in analogy
to the first one, sampling now M observation vectors from N(Ax̃, σ̃2IN), and using the two new sets of
parameter solutions (regarding the polynomial and B-spline model) to compute the M realizations of
the log-likelihood ratios, as well as the resulting estimates of µ1 and σ1.

Since Cox [23] suggests applying the one-sided decision rules,

1. reject H0 if T0 < kN(0,1)
α , and

2. reject H1 if T1 > kN(0,1)
1−α

(where kN(0,1)
α is the α-quantile and kN(0,1)

1−α the 1− α-quantile of the standard normal distribution),
the execution of the two tests may result in four mutually exclusive decisions:

1. The polynomial model is rejected and the B-spline model is not rejected in the case of

T0 < kN(0,1)
α ∧ T1 ≤ kN(0,1)

1−α . (12)

2. The B-spline model is rejected and the polynomial model is not rejected in the case of

T0 ≥ kN(0,1)
α ∧ T1 > kN(0,1)

1−α . (13)

3. Both the polynomial and the B-spline models are rejected in the case of

T0 < kN(0,1)
α ∧ T1 > kN(0,1)

1−α . (14)

4. Neither the polynomial nor the B-spline model is rejected in the case of

T0 ≥ kN(0,1)
α ∧ T1 ≤ kN(0,1)

1−α . (15)

2.3.2. Vuong’s Non-Nested Hypothesis Test

Vuong’s test is based on the Kullback–Leibler information criterion (KLIC), which measures the
closeness of two models and uses the likelihood-ratio-based statistics to test the null hypothesis that
the competing models are equally close to the true data generating process against the alternative
hypothesis that one model is closer [25]. Specifically, the two competing models are given as Fθ =

{ f (l; θ); θ ∈ Θ} and Gγ = {g(l; γ); γ ∈ Γ}, l denotes variables, and θ and γ are their respective
parameters. As defined by Vuong, the two models’ Kullback–Leibler distances from the true density
h0(l) are E0[ln h0(l)]− E0[ln f (l; θ∗)] and E0[ln h0(l)]− E0[ln g(l; γ∗)], respectively, where E0 denotes
the expectation under the true model, and θ∗ and γ∗ are the pseudo-true values of θ and γ. It is clear
that the model with a minimum KLIC value is closer to the truth, which is, however, hard to quantify.
Thus, an equivalent selection criterion can be based on the quantities E0[ln f (l; θ∗)] and E0[ln g(l; γ∗)],
the better model being the one with larger quantity.

There are three possible cases when comparing, and we propose the null hypothesis, as the
two models have equal expectation values so that they are equivalent. One alternative hypothesis is
E0[ln f (l; θ∗)] > E0[ln g(l; γ∗)], which means Fθ is the better model. The other alternative hypothesis is
E0[ln f (l; θ∗)] < E0[ln g(l; γ∗)], meaning Gγ is better. Since the quantity E0[ln f (l; θ∗)]− E0[ln g(l; γ∗)]
is still hard to quantify, Vuong consistently estimates it by (1/n) times the likelihood ratio statistic.
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In our specific case to discriminate between the polynomial and B-spline surface models, with
independent and identically distributed observations l, the probability density functions of competing
models are given as Px,σ = {p(l; x, σ2)} and Bx,σ = {b(l; x, σ2)}, in which the parameter matrix x is
estimated in its respective Gauss–Markov models and the variance factor σ2 for competing models is
calculated in the same way as in Cox’s test: σ̂2 = 1

N ∑N
n=1(ln −A0nx̂)2 and σ̃2 = 1

N ∑N
n=1(ln −A1nx̃)2.

Thus, we propose the hypothesis in discriminating between models as follows:

1. H0: the polynomial and B-spline models are equally close to the truth;
2. Hp: the polynomial model is better since it is closer to the truth than the B-spline model is;
3. Hb: the B-spline model is better since it is closer to the truth than the Polynomial model.

Similar to Cox’s test, the statistic of Vuong’s test is also based on likelihood ratio. If we define
L0(x̂, σ̂2; l) and L1(x̃, σ̃2; l) as log-likelihood functions for competing polynomial and B-spline surface
models, the logarithmized likelihood ratio L0,1 is calculated as (11). Vuong’s test is potentially sensitive
to the number of estimated parameters on condition that the logarithmized likelihood ratio L0,1 is
adjusted by a correction factor K.

L̃0,1 ≡ L0,1 − K. (16)

Vuong [25] suggests that K corresponds to either Akaike’s information criteria (AIC) or Bayesian
information criteria (BIC). According to the former, K = p0 − p1, and, according to the latter, K =

(p0/2) ln N − (p1/2) ln N, where p0 and p1 are numbers of parameters in competing models. The BIC
generally penalizes free parameters more strongly than AIC. Here, we prefer the BIC correction factor
in order to avoid an over-fitting problem.

Then, the adjusted likelihood ratio L̃0,1 is rescaled in statistic as TV = N−1/2 L̃0,1/ŵ, where ŵ2 is
the variance calculated as

ŵ2 =
1
N

N

∑
n=1

[
ln

p(ln; A0nx̂, σ̂2)]

b(ln; A1nx̃, σ̃2)

]2

−
[

1
N

N

∑
n=1

ln
p(ln; A0nx̂, σ̂2)]

b(ln; A1nx̃, σ̃2)

]2

. (17)

According to Vuong [25], when N is reasonably large, the statistic TV converges, asymptotically
to a standard normal distribution, N(0, 1). In the decision-making process, practically, we compare
TV against the quantiles of a standard normal distribution, CN(0,1)

α/2 , for significance level α. The models
are discriminated through the following decision rules:

1. The polynomial and B-spline models are equally close to the truth in case of

CN(0,1)
α/2 ≤ TV ≤ CN(0,1)

1−α/2. (18)

2. The polynomial model is better since it is closer to the truth than B-spline model in case of

TV > CN(0,1)
1−α/2. (19)

3. The B-spline model is better since it is closer to the truth than Polynomial model in case of

TV < CN(0,1)
α/2 . (20)

2.4. Deformation Analysis

To probe the selected surface model’s performance in deformation analysis, each target segment
of the 1st and 13th epochs are approximated by surface models. In the specific application, loads were
exerted perpendicular to the ground (in the Z-direction) so that the deformation (∆) is defined as the
difference in approximated Z-coordinates of the two epochs (Ẑ13, Ẑ1), that is,

∆ = Ẑ13 − Ẑ1. (21)
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The evaluation criterion of surface models’ performance is whether they are able to reflect
the actual deformation, which are recorded by the point cloud. Since it is impossible to get an
exact mutual spatial referencing of points in the different epochs, we compared the point clouds
through the block-mean approach used in Paffenholz et al. [32]. In this application, the blocks had
a size of 5 mm × 5 mm involving 2–9 points, for which the medians of the Z-coordinates were
computed as representative values. The high-density block-means between the two epochs were used
to approximate the point-wise changes.

3. Results

3.1. Evaluation of Competing Polynomial and B-Spline Models

In order to statistically discriminate between the aforementioned polynomial and B-spline surface
models listed in Table 1, the result of Cox’s and Vuong’s test for the two segments are given in
Tables 2 and 4, respectively. It is noticeable that the observations are assumed to be following identical
and independent normal distribution, which satisfy the prerequisite of both tests. In addition, Figure 4
demonstrates that the 10,000 log-likelihood ratio values of Equation (11) sampled with respect to
Cox’s test follow approximately a Gaussian distribution under both the polynomial and B-spline
surface models. Thus, it is justified to standardize the log-likelihood ratio computed from the actual
measurements by means of the sample mean and standard deviation under each of the two stochastic
models (resulting in the values for T0 and T1 shown in Tables 2 and 4).

Figure 4. Histogram of the sampled log-likelihood ratio L0,1 under the polynomial (left) and B-spline
(right) surface model, approximated by a Gaussian density functions (in red).

The statistics are compared to the critical value at type-I error rate α = 0.05. In Cox’s test,
the critical values are kN(0,1)

0.05 = −1.64 for statistic T0, and kN(0,1)
0.95 = 1.64 for statistic T1. In Vuong’s test,

the critical values are CN(0,1)
0.025 = −1.96 and CN(0,1)

0.975 = 1.96.
It can be clearly seen in Table 2 that, within the first pair of models, the B-spline surface model

with six parameters is preferred over the second-degree polynomial model, since, in Vuong’s test, the
former is better verified, and, in Cox’s test, the latter is rejected. This result indicates, with minor
parameters, B-spline models are superior to the equivalent polynomial one. This conjecture is validated.
In the second pair of models, neither the third-degree polynomial model nor the B-spline model is
rejected or selected by tests, whose findings indicate that there is no significant difference between
the two models. Next, further comparisons are carried out within Pair III between a fourth-degree
polynomial and B-spline models with 15 and 16 unknown parameters, respectively. According to
the tests results, Vuong’s test indicates there is no significant superiority between the two, while the
polynomial model is rejected by the Cox’s test.

As mentioned before, polynomial functions of degrees greater than four become numerically
unstable due to the appearance of singular matrices, so that they cannot be recommended. By contrast,
approximated B-spline surface models for Segment I can describe the target segment of the point cloud
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increasingly well when the parameters are increased, without producing such numerical difficulties.
When comparing the increasingly accurate B-spline models with the fourth-degree polynomial surface
model of Segment I by means of both hypothesis tests, as previous predicted, we find that the
Cox’s test always rejects the models with fewer parameters, which leads to the problem of over-fitting.
By contrast, Vuong’s test initially tends to prefer B-spline models due to higher approximation quality
until Pair 36, in which large quantities of parameters are set (NB = 1600). Table 3 offers the last five
comparison pairs to show the aforementioned change in test decision. The complete test results for
discriminating between fourth-degree polynomial and B-spline surface models are shown in Table A1.

Table 2. Results for Segment I of Cox’s test for discriminating between polynomial and B-spline surface
models at type-I error rate α = 0.05.

Pair
Cox’s Test Vuong’s Test

T0 Rejected T1 Rejected TV Preferred

I −39.93 polynomial −23.44 no −29.95 B-spline
II −0.68 no 1.44 no 0.19 no
III −14.85 polynomial −1.21 no 0.37 no

Table 3. Partial results for Segment I of Vuong’s test and Cox’s test for discriminating between
fourth-degree polynomial and B-spline surface models at type-I error rate α = 0.05.

Pair
Competing Models Cox’s Test Vuong’s Test

Polynomial B-Spline T0 Rejected T1 Rejected TV Preferred

32 Npoly = 15 NB = 1296 −236.65 polynomial −70.33 no −8.99 B-spline
33 Npoly = 15 NB = 1369 −213.58 polynomial −72.86 no −9.28 B-spline
34 Npoly = 15 NB = 1444 −199.14 polynomial −70.94 no −5.00 B-spline
35 Npoly = 15 NB = 1521 −192.05 polynomial −84.49 no −3.14 B-spline
36 Npoly = 15 NB = 1600 −180.07 polynomial −80.21 no −0.36 no

The testing results for Segment II are listed in Table 4. It is indicated by the first comparison pair
that both the polynomial and the B-spline surface models are rejected by Cox’s test, while Vuong’s test
considers the polynomial model to be closer to the truth than its competitor. Within the second and
third pairs, B-spline models are judged as insufficient by Cox’s test, whereas the polynomial models
are preferred by Vuong’s test.

Table 4. Results for segment II of Cox’s test for discriminating between polynomial and B-spline
surface models at type-I error rate α = 0.05.

Pair
Cox’s Test Vuong’s Test

T0 Rejected T1 Rejected TV Preferred

I −3.96 polynomial 4.46 B-spline 5.95 polynomial
II −1.58 no 5.89 B-spline 7.43 polynomial
III 0.87 no 10.65 B-spline 11.31 polynomial

The testing result differs greatly between the two segments. These differences can be explained
by the fact that Segment II contains large data gaps, which substantially distort the B-spline model
estimation, in contrast to the polynomial model estimation.

3.2. Evaluation of Competing B-Spline Models with Various Parameters

The results in Table 3 motivate us to evaluate B-spline surface models with increasing parameters
by means of Vuong’s test in search of a balance between model complexity and its approximation
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quality. Two B-spline models with different degrees or control points (Model I and Model II) are
non-nested because the parameters in Model I are not a subset of the parameters in Model II.
The modification of the degree or the number of control points (see Equation (1)) leads to a change in the
number of knots, resulting in different basis functions. The comparison of pair setting and evaluation
results are shown in Table A2, where NB1 = (m1 + 1) · (n1 + 1) denotes the parameter number of the
first B-spline model and NB2 = (m2 + 1) · (n2 + 1) denotes that of the second model in the competing
pair. The statistic value and test decision are shown in the last two columns. Here, we present the
comparison results of B-spline models with m1 = n1 = i and m2 = n2 = i + 2 (i = 1, 2, 3...37) instead
of neighbor models (m1 = n1 = i, m2 = n2 = i + 1). There were large oscillations in the testing results
of the pairwise neighbor models. These oscillations, which were due to the similar parameter number
and model quality between neighbor models, served as noise and would confuse the result. The testing
results became stable when we chose comparison models as m1 = n1 = i and m2 = n2 = i + 2.

According to the results in Table A2, B-Spline Model II with more parameters is preferred
initially; however, due to the increasing penalized term, B-Spline Model I is preferred in the final pair.
The middle comparison pairs are considered to be in the overlapping region, where the test decisions
swing between the two competing models. Table 5 shows the comparison pairs in the overlapping
region. It can be considered that the balance sought of the model’s complexity and its approximation
quality is located in this region. Figure 5 offers a direct view of test statistic TV in comparison with
critics boundaries CN(0,1)

0.025 = −1.96 and CN(0,1)
0.975 = 1.96.

Table 5. Partial results of Vuong’s test for discriminating B-spline surface models at type-I error rate
α = 0.05 (overlapping region).

Pair
B-Spline Model I B-Spline Model II Vuong’s Test

m1,n1 NB1 m2,n2 NB2 TV Preferred

13 m1 = n1 = 14 225 m2 = n2 = 16 289 −0.57 no
14 m1 = n1 = 15 256 m2 = n2 = 17 324 −6.57 model 2
15 m1 = n1 = 16 289 m2 = n2 = 18 361 −4.06 model 2
16 m1 = n1 = 17 324 m2 = n2 = 19 400 −3.89 model 2
17 m1 = n1 = 18 361 m2 = n2 = 20 441 −4.15 model 2
18 m1 = n1 = 19 400 m2 = n2 = 21 484 3.02 model 1
19 m1 = n1 = 20 441 m2 = n2 = 22 529 9.09 model 1
20 m1 = n1 = 21 484 m2 = n2 = 23 576 0.41 no

We consider the B-spline model with 361 parameters (n = 18, m = 18), which lies roughly in the
middle of the overlapping region, as the optimal one. Figure 6 shows the side- and top-view of this
surface model.

Figure 5. Statistic values of Vuong’s test in comparison with critics.



Remote Sens. 2018, 10, 634 14 of 22

Figure 6. Side-view (a) and top-view (b) of approximated B-spline surface (n = 18, m = 18) with the
original measurements (blue points).

3.3. Performance in Deformation Analysis

3.3.1. Deformation of Segment I

According to the model evaluation results for Segment I, the fourth-degree model is best-fitting
among polynomial surface models, while the B-spline surface model with 361 parameters is optimal
among all candidate models. We approximate both types of surface models for the point cloud in the
13th epoch with the same number of parameters.

Because traditional polynomial models are still the most widely used regression method in
deformation analysis due to their simple operating, while the B-spline model has the potential
to describe geometrically complicated objects, it is of significance to compare the performance in
this numerical example between two surface models with their best-fitting parameters in reflecting
deformation. In Figure 7a shows the modeled fourth-degree polynomial surfaces for the 1st (upper)
and 13th (lower) epochs, while Figure 7b shows the equivalent epochs approximated by means of
B-spline surfaces with 361 parameters. It is obvious that the B-spline surfaces in Figure 7b describe
more detailed geometrical features than polynomial model in Figure 7a. The arch’s deformation
in Z-coordinates between the two epochs are shown in Figures 7c,d, by means of approximated
polynomial surfaces of Figure 7a and B-spline models of Figure 7b, respectively. In order to validate
that the reflected changes are the real arch’s deformation recorded by the points instead of regression
models, we compare the two epochs’ point cloud through the block-mean approach (see Figure 8
for the differences between the two epoch’s point clouds). By comparison, it is obvious that the
deformation shown in Figure 7d for B-spline models reflect these differences precisely, especially
in Areas A and B; in contrast, the fourth-degree polynomial surfaces in Figure 7c fail to show this
deformation due to their global smoothing effect. The preceding difference and model deformation
are also shown pointwise in Figure 9. The green asterisks denote the point-wise differences recorded
by block-means, while the red and blue asterisks are that reflected by the fourth-degree polynomial
and B-spline surfaces, respectively.
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Figure 7. Polynomial (a,c) and B-spline surface models (b,d) in terms of differences of the 1st and 13th
epochs in Segment I.

Figure 8. Deformation of segment I reflected by block means of the point cloud differences based on
the 1st and 13th epochs.

Figure 9. Deformation of Segment I between 1st and 13th epochs reflected by various approaches.
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3.3.2. Deformation of Segment II

In Figure 10a shows the modeled fourth-degree polynomial surfaces for the 1st (upper) and 13th
(lower) epochs, while Figure 10b shows the same epochs approximated by means of B-spline surfaces
with 16 parameters.

Figure 10. Polynomial (a,c) and B-spline surface models (b,d) in reflecting deformation of segment II
based on the 1st and 13th epochs.

The missing data lead to oscillation, especially at the edges of the data gap (see the bounded area
in Figure 11). Thus, it can be found from Figure 10d that the deformation reflected by B-splines is
far from the truth. Here, the estimated B-spline surfaces clearly show the aforementioned numerical
instabilities, which are caused by an inadequate specification of the knot locations with the applied
classical approach to knot vector determination in Piegl and Tiller [29].

Figure 11. Deformation of Segment II reflected by block means of the point cloud differences based on
the 1st and 13th epochs.
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4. Discussion

In our numerical example of Segment I, the different results between the two hypothesis tests
are caused by the penalized term regarding the parameter numbers. In Table 2, for example, Pair III
has various test results. In Cox’s test, the fourth-degree polynomial model is rejected because of the
relatively poor accuracy, while the Vuong’s test result recommends neither, because the improved
accuracy is offset by the punishment of increasing parameters. In parallel, in Table 3, the test decision
initially shows in the consistency of both tests that the B-spline models are better compared to the
fourth-degree polynomial model. However, as the number of parameters increase, the improvement
of model accuracy declines. Finally, in Voung’s test, the advantage of the model’s quality is offset
again by the large penalized value and, consequently, shows results that are different from Cox’s test
in Pair 36.

Although Cox’s test without penalized term is limited to discriminate models with similar
parameters, it is practically very straightforward to implement and are able to offer more reliable
decisions by simulating the test distribution, especially when the sample size is small [33]. We expect
to improve the simulation-based version of Cox’s test by adding a proper correction factor similar to
that in Vuong’s non-nested hypothesis test, which would be one of our future research projects.

Since previous geodetic literatures [21,22,28] has solved the model selection problem through
well-known penalization information criteria: the AIC and BIC, it is necessary in this section to
compare Vuong’s non-nested hypothesis test with this widely used approach. It is noticeable that there
are close connections between AIC, BIC, and Vuong’s test. Taking the BIC as an example, the value of
model 1 is calculated as

BIC1 = −2 ln L1 − p1 · ln N (22)

where L1 is the maximum value of the likelihood function for Model 1, p1 denotes the parameter
quantity, and N is the number of measurements. The different BIC value between two models is
calculated as

BIC12 = −2 ln
L1

L2
− (p1 − p2) · ln N (23)

where the first term in the right part contains logarithmized likelihood ratio L0,1 in Equation (16),
so that BIC12 is equal to the (un-normalized) adjusted test statistic L̃0,1 for Vuong’s test. The main
difference is that Vuong’s test makes judgments in a framework of likelihood ratio hypothesis testing,
which offers the advantage that significant probabilistic differences between models can be detected,
which is not provided by classical penalization information criterion methods. We compared the
Vuong’s test results with both the AIC and BIC to discriminate between B-spline surface models,
and the result is shown in Figure 12. According to the BIC’s curve, the B-spline model with 361
parameters (n = 18, m = 18) is optimal, since it is associated with the smallest value. This result is quite
consistent with the judgment of Vuong’s test, because the BIC penalized term is used in our adjusted
test statistic. By contrast, the AIC tends to prefer much larger models.

Furthermore, the performance of best-fitting polynomial and B-spline surfaces in reflecting
deformation were compared. The superior model was the one able to reflect the deformation details
recorded by the point clouds. In order to get an exact mutual spatial referencing of points in the different
epochs, we used the block-mean approach to approximate the point-wise changes. The comparison
results of Segment I indicated that the selected B-spline surfaces can reflect the actual deformation,
especially in Areas A and B of Figure 8, while the best-fitting polynomial model failed to offer this
information due to its global smooth effect. However, in the case of Segment II, B-spline models failed
to reflect the actual deformation values, especially at the edges of the data gap.
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Figure 12. AIC (red) and BIC (green) values with an increasing number of parameters.

5. Conclusions

In this paper, we approximated point cloud data of a surveyed arch structure by two common
surface models: polynomials and B-splines. Subsequently, we compared different adjusted surface
models via Cox’s test and Vuong’s test to select an appropriate parametric model, which was sufficient
to describe the geometrical features of the two target segments.

Regarding Segment I, in the initial comparison between lower degree polynomial and B-spline
models, none of the B-spline models investigated was rejected, but only the polynomial model
with degree 3 was found to be adequate in Cox’s test, while Voung’s test indicated no significant
difference in Pairs II and III. However, none of these models could reflect detailed geometrical features
of target segments. Since it was not possible to increase the degree of polynomial approximation
(due to numerical instability of the normal equations) for modeling geometrical details, B-splines
were recommended in the field of applications presented. That motivated us to search for an optimal
model balancing between approximation quality and its complexity. According to Voung’s test
decisions, the B-spline surface model with NB = 361 was considered as the optimal one in the specific
numerical example.

The model selection testing results of Segment II were quite different from that of Segment I.
All the B-spline models were rejected by Cox’s test, while in Pairs II and III, the equivalent polynomial
surfaces were preferred by Voung’s test, as a consequence of the aforementioned numerical instabilities
with the knot vector determination and the resulting oscillation effects. Such deficiencies were clearly
reflected by the model selection tests, which rejected inadequate B-spline models.

A consistent model selection result was obtained by comparing Vuong’s test decision with the
widely used BIC in discriminating B-spline surface models. Thus, it is concluded that the alternative
model selection methodology elaborated in this paper, in parallel with well-known penalization
information criteria, can effectively guide practitioners in selecting a parsimonious and accurate model
for structures, such as the arch in the numerical example presented. The main difference is that Vuong’s
test makes judgments in a framework of likelihood ratio hypothesis testing, which can detect the
significant probabilistic differences between models. It was proved here that the models selected by
the model selection tests have good performance in reflecting actual deformation.

The model selection methodology is applicable not only to TLS data but also to point clouds
obtained by other LiDAR technology, such as airborne laser scanning and mobile laser scanning. There
are also distribution-free hypothesis tests, such as Clarke’s test [34], available for mixed distribution
observations.
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Appendix A

Table A1. Results for Segment I of Vuong’s test and Cox’s test for discriminating between fourth-degree
polynomial and B-spline surface models at type-I error rate α = 0.05.

Pair
Competing Models Cox’s Test Vuong’s Test

Polynomial B-Spline T0 Rejected T1 Rejected TV Preferred

1 Npoly = 15 NB = 25 −96.88 polynomial −6.31 no −14.92 B-spline
2 Npoly = 15 NB = 36 −82.69 polynomial −5.30 no −14.59 B-spline
3 Npoly = 15 NB = 49 −210.65 polynomial −17.54 no −13.99 B-spline
4 Npoly = 15 NB = 64 −324.26 polynomial −19.77 no −13.37 B-spline
5 Npoly = 15 NB = 81 −306.37 polynomial −31.21 no −12.58 B-spline
6 Npoly = 15 NB = 100 −323.49 polynomial −28.37 no −12.75 B-spline
7 Npoly = 15 NB = 121 −338.20 polynomial −33.64 no −13.23 B-spline
8 Npoly = 15 NB = 144 −359.43 polynomial −38.19 no −11.79 B-spline
9 Npoly = 15 NB = 169 −325.74 polynomial −42.33 no −10.44 B-spline
10 Npoly = 15 NB = 196 −341.49 polynomial −41.76 no −9.68 B-spline
11 Npoly = 15 NB = 225 −294.75 polynomial −48.19 no −11.53 B-spline
12 Npoly = 15 NB = 256 −333.69 polynomial −50.22 no −10.59 B-spline
13 Npoly = 15 NB = 289 −279.57 polynomial −46.54 no −11.23 B-spline
14 Npoly = 15 NB = 324 −318.33 polynomial −51.20 no −10.02 B-spline
15 Npoly = 15 NB = 361 −317.28 polynomial −52.92 no −9.90 B-spline
16 Npoly = 15 NB = 400 −275.54 polynomial −59.22 no −7.43 B-spline
17 Npoly = 15 NB = 441 −276.37 polynomial −52.10 no −8.55 B-spline
18 Npoly = 15 NB = 484 −313.79 polynomial −66.44 no −9.12 B-spline
19 Npoly = 15 NB = 529 −262.48 polynomial −54.70 no −7.99 B-spline
20 Npoly = 15 NB = 576 −270.20 polynomial −56.54 no −10.10 B-spline
21 Npoly = 15 NB = 625 −285.65 polynomial −49.27 no −6.99 B-spline
22 Npoly = 15 NB = 676 −268.69 polynomial −68.30 no −10.59 B-spline
23 Npoly = 15 NB = 729 −267.04 polynomial −62.88 no v8.99 B-spline
24 Npoly = 15 NB = 784 −241.21 polynomial −67.39 no −9.54 B-spline
25 Npoly = 15 NB = 841 −268.29 polynomial −68.11 no −8.99 B-spline
26 Npoly = 15 NB = 900 −280.65 polynomial −75.17 no −8.70 B-spline
27 Npoly = 15 NB = 961 −217.72 polynomial −69.20 no −6.99 B-spline
28 Npoly = 15 NB = 1024 −258.19 polynomial −84.32 no −7.37 B-spline
29 Npoly = 15 NB = 1089 −227.56 polynomial −80.89 no −8.67 B-spline
30 Npoly = 15 NB = 1156 −240.33 polynomial −82.54 no −9.77 B-spline
31 Npoly = 15 NB = 1225 −232.69 polynomial −72.30 no −7.59 B-spline
32 Npoly = 15 NB = 1296 −236.65 polynomial −70.33 no −8.99 B-spline
33 Npoly = 15 NB = 1369 −213.58 polynomial −72.86 no −9.28 B-spline
34 Npoly = 15 NB = 1444 −199.14 polynomial −70.94 no −5.00 B-spline
35 Npoly = 15 NB = 1521 −192.05 polynomial −84.49 no −3.14 B-spline
36 Npoly = 15 NB = 1600 −180.07 polynomial −80.21 no −0.36 no
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Table A2. Results of Vuong’s test for discriminating B-spline surface models at type-I error rate α = 0.05.

Pair
B-Spline Model I B-Spline Model II Vuong’s Test

m1,n1 NB1 m2,n2 NB2 TV Preferred

1 m1 = n1 = 2 9 m2 = n2 = 4 25 −20.46 model 2
2 m1 = n1 = 3 16 m2 = n2 = 5 36 −12.84 model 2
3 m1 = n1 = 4 25 m2 = n2 = 6 49 −23.72 model 2
4 m1 = n1 = 5 36 m2 = n2 = 7 64 −25.30 model 2
5 m1 = n1 = 6 79 m2 = n2 = 8 81 −21.23 model 2
6 m1 = n1 = 7 64 m2 = n2 = 9 100 −20.32 model 2
7 m1 = n1 = 8 81 m2 = n2 = 10 121 −12.28 model 2
8 m1 = n1 = 9 100 m2 = n2 = 11 144 −20.03 model 2
9 m1 = n1 = 10 121 m2 = n2 = 12 169 −8.31 model 2

10 m1 = n1 = 11 144 m2 = n2 = 13 196 −2.30 model 2
11 m1 = n1 = 12 169 m2 = n2 = 14 225 −7.92 model 2
12 m1 = n1 = 13 196 m2 = n2 = 15 256 −4.11 model 2
13 m1 = n1 = 14 225 m2 = n2 = 16 289 −0.57 no
14 m1 = n1 = 15 256 m2 = n2 = 17 324 −6.57 model 2
15 m1 = n1 = 16 289 m2 = n2 = 18 361 −4.06 model 2
16 m1 = n1 = 17 324 m2 = n2 = 19 400 −3.89 model 2
17 m1 = n1 = 18 361 m2 = n2 = 20 441 −4.15 model 2
18 m1 = n1 = 19 400 m2 = n2 = 21 484 3.02 model 1
19 m1 = n1 = 20 441 m2 = n2 = 22 529 9.09 model 1
20 m1 = n1 = 21 484 m2 = n2 = 23 576 0.41 no
21 m1 = n1 = 22 529 m2 = n2 = 24 625 3.21 model 1
22 m1 = n1 = 23 576 m2 = n2 = 25 676 9.23 model 1
23 m1 = n1 = 24 625 m2 = n2 = 26 729 1.97 model 1
24 m1 = n1 = 25 676 m2 = n2 = 27 784 10.03 model 1
25 m1 = n1 = 26 729 m2 = n2 = 28 841 16.27 model 1
26 m1 = n1 = 27 784 m2 = n2 = 29 900 4.23 model 1
27 m1 = n1 = 28 841 m2 = n2 = 30 961 12.7 model 1
28 m1 = n1 = 29 900 m2 = n2 = 31 1024 11.81 model 1
29 m1 = n1 = 30 961 m2 = n2 = 32 1089 10.33 model 1
30 m1 = n1 = 31 1024 m2 = n2 = 33 1156 18.17 model 1
31 m1 = n1 = 32 1089 m2 = n2 = 34 1225 14.05 model 1
32 m1 = n1 = 33 1156 m2 = n2 = 35 1296 18.83 model 1
33 m1 = n1 = 34 1225 m2 = n2 = 36 1369 24.62 model 1
34 m1 = n1 = 35 1296 m2 = n2 = 37 1444 22.86 model 1
35 m1 = n1 = 36 1369 m2 = n2 = 38 1521 24.40 model 1
36 m1 = n1 = 37 1444 m2 = n2 = 39 1600 22.14 model 1
37 m1 = n1 = 38 1521 m2 = n2 = 40 1681 24.68 model 1
38 m1 = n1 = 39 1600 m2 = n2 = 41 1764 24.86 model 1
39 m1 = n1 = 40 1681 m2 = n2 = 42 1849 27.61 model 1
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