

Sitzungsberichte

der

mathematisch-physikalischen Klasse

der

K. B. Akademie der Wissenschaften

zu München.

Band XXXVI. Jahrgang 1906.

München

Verlag der K. B. Akademie der Wissenschaften 1907.

In Kommission des G. Franz'schen Verlage (J. Roth).

Die beim beidäugigen Sehen durch optische Instrumente möglichen Formen der Raumanschauung.

Von Moritz v. Rohr.

(Hingelaufen 8. November.)

(Mit Tafel IV.)

Wenn man die Formen der Raumanschauung, die durch die verschiedenen binokularen Instrumente vermittelt werden, systematisch ordnen will, so stößt man bei der Pseudoskopie auf eine gewisse Schwierigkeit. Diese Erscheinung ist nicht nur auf eine gewissermaßen zufällige Art entdeckt worden, sondern sie wird auch heute noch in einer recht indirekten, an den Einzelheiten der pseudomorphen Instrumente haftenden Weise der Orthoskopie gegenübergestellt.

Die Betrachtung der Strahlenbegrenzung schien hier ein einfaches Einteilungsprinzip an die Hand zu geben, und die eingehende Behandlung der verschiedenen Fälle lieferte auch eine Erweiterung der Erkenntnis für die beim einäugigen Sehen auftretenden Möglichkeiten.

Wenn man mit freien Augen ein Objekt betrachtet, so sind stets zwei Bedingungen ohne weiteres erfüllt, und zwar ist ihre Erfüllung so selbstverständlich, daß ihr Bestehen bei der Behandlung des Sehvorganges meistens übersehen wird. Einmal liegt im Sinne der Lichtbewegung das Objekt in Bezug auf jedes Einzelauge vorn, und dann ist die Lage der beiden Augen zueinander stets so, daß ihre Medial- oder Nasenseiten einander zu-, ihre Lateral- oder Schläfenseiten voneinander abgewandt sind. Beide Bedingungen sollen in der neben-

stehenden Figur 1 als erfüllt kenntlich gemacht sein. Die erste von ihnen ist die Bedingung des einäugigen, die zweite die

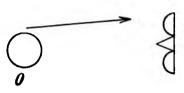


Fig. 1. Die Betrachtung des Objekts O mit unbewaffneten Augen.

des beidäugigen natürlichen Sehens. Es ist auch ganz unmöglich, sich beim Gebrauch der unbewaffneten Augen den Objekten gegenüber von der Einhaltung dieser Bedingungen frei zu machen.

Der Charakter der natürlichen Perspektive.

Die soeben erwähnte Lage des Einzelauges zum Objekt hat zur Folge, daß sich das Projektionszentrum jenes flächenhaften Bildes, das allein dem Auge zugänglich ist, im Beobachter oder zwischen Objekt und Beobachter befindet; dabei ist es für den Charakter der Perspektive gleichgültig, ob sie durch die Mitte der Augenpupille oder — im freien, direkten Sehen — durch den Augendrehungspunkt bestimmt wird. Ja, es ändert sich der perspektivische Charakter — die geringere Größe weiter entfernter Gegenstände — nicht, wenn die Strahlenbegrenzung durch ein enges Loch zwischen dem Objekt und dem Auge vorgenommen wird, während die Beobachtung bei ruhig gehaltenem Auge durch die weit geöffnete Pupille, oder bei bewegtem Kopfe und entsprechend bewegtem Auge als eine reine Schlüssellochbeobachtung zustande kommt.

Das Gemeinsame für alle diese Fälle soll dadurch hervorgehoben werden, daß man überall da, wo es sich um die gewöhnliche Perspektive handelt, dieselbe Bezeichnung für den Strahlengang anwendet. Da in diesen Fällen stets das Zentrum der Projektion vom Objekt aus gerechnet in der Richtung auf den Beobachter zu liegt, so sei der Strahlengang als ein entozentrischer (von êrrós = diesseits) eingeführt.

Dieser Charakter der natürlichen Perspektive, daß vom Objekt aus gesehen das Zentrum nach dem Beobachter zu in endlicher Entfernung liegt, und daß daher ein näheres Objekt dem Beobachter unter einem größeren Gesichtswinkel erscheint als ein gleichgroßes ferneres, ist unumgänglich nötig, wenn die Erscheinungsformen der Umgebung auf Grund der Erfahrung schnell und zutreffend gedeutet werden sollen. Man geht kaum zu weit, wenn man der natürlichen Perspektive für die Raumvorstellung eine noch größere Bedeutung beilegt als sogar dem Sehen mit beiden Augen.

Die Aufhebung der natürlichen Perspektive.

Die optischen Instrumente bieten die Möglichkeit, sich von den verschiedenen soeben aufgezählten Beschränkungen frei zu machen, sei es, daß das sie verlassende Licht nur gebrochen oder nur gespiegelt oder gebrochen und gespiegelt wurde. Bei der Unvollständigkeit, mit der die Wirkung solcher optischen Vorkehrungen betrachtet zu werden pflegt, erscheint es zweckmäßig, hier einen kurzen Exkurs einzuschalten, wobei auf die ausführlicheren Darstellungen verwiesen sei, die sich an anderen Stellen¹) finden.

Die Wirkung eines optischen Instruments auf einer Schirmfläche (meistens einer Schirmebene) beschränkt sich stets auf die Abbildung eines flächenhaften Objektgebildes oder meistens der Einstellungsebene. Alle nicht in dieser Einstellungsebene liegenden Objektpunkte werden von der Eintrittspupille des Instruments durch Büschel endlicher Öffnung in sie hineinprojiziert, so daß sie in ihr unscharf, d. h. als Zerstreuungskreise, erscheinen. Für die Perspektive kommt es allein auf

¹⁾ Die Bilderzeugung in optischen Instrumenten vom Standpunkte der geometrischen Optik. Bearbeitet von den wissenschaftlichen Mitarbeitern an der optischen Werkstätte von Karl Zeiß P. Culmann, S. Czapski, A. König, F. Löwe, M. von Rohr, H. Siedentopf, E. Wandersleb. Herausgegeben von M. von Rohr. 80. XX, 587 Seiten mit 133 Textfig. Berlin, J. Springer, 1904, S. 466-507.

Grundzüge der Theorie der optischen Instrumente nach Abbe. Von S. Czapski. 2. Aufl. Unter Mitwirkung des Verfassers und mit Beiträgen von M. von Rohr. Herausgegeben von O. Eppenstein. (Sonderabdruck aus A. Winkelmanns Handbuch der Physik, Bd. 6.) Leipzig, J. A. Barth, 1904. gr. 8°. XVI, 479 Seiten mit 176 Textfig., S. 248—261.

die Mittelpunkte dieser Zerstreuungskreise an, und zwar werden diese durch alle die Strahlen bestimmt, die von der Mitte der Eintrittspupille ausgehen. Die so auf der Einstellungsebene entstehende Darstellung, das objektseitige Abbild, wird dem Auge dargeboten — unter Umständen unter verändertem Gesichtswinkel und in abweichendem Maßstabe —, doch kann stets die Wirkung des optischen Instruments für das unbegrenzt akkommodierende Auge in theoretischer Strenge durch das objektseitige Abbild ersetzt werden, wenn man die Gesichtswinkel w' kennt, die durch das Instrument auf der Bildseite hervorgebracht werden.

Je nach der Größe der Augenpupille im Verhältnis zu der Austrittspupille des Instruments sind auch bei den optischen Instrumenten die beiden schon für das unbewaffnete Auge wichtigen Fälle möglich, nämlich der des unbehinderten Sehens, wo der Augendrehungspunkt die Perspektive bestimmt, und der der Schlüssellochbeobachtung, wo die Pupille des Instruments für die Perspektive bestimmend ist.

Eine Abweichung von der bisher allein betrachteten entozentrischen Perspektive ergab sich, als Systeme konstruiert
wurden, bei denen die Eintrittspupille im Unendlichen lag,
oder mit anderen Worten, die nach der Objektseite telezentrisch gemacht worden waren. Es scheint, daß eine solche
Regulierung des Strahlenganges (wobei die Abblendung in der
hinteren Brennebene des den Objekten zugekehrten Systemteils
vorgenommen wird) bewußt zuerst von E. Abbe eingeführt
worden ist. Jedenfalls hat er zuerst ganz allgemein die Folgen
angegeben, die ein solcher Strahlengang für die Maßverhältnisse hat, unter denen körperliche Objekte einem durch ein
solches System schauenden Auge erscheinen. Da das Projektionszentrum der Objekte im Unendlichen liegt, so muß sich
auf der Einstellungsebene eine Parallelprojektion einstellen,
eine Erscheinungsform, die E. Abbe¹) im Falle des zusammen-

¹⁾ Ueber mikrometrische Messung mittelst optischer Bilder. Sitzber. Jen. Ges. Med. Naturw. 1878, 11—17, S. 14. Siehe auch in: Gesammelte Abhandlungen von Ernst Abbe. Bd. l. G. Fischer, Jena 1904, S. 168.

gesetzten Mikroskops sehr deutlich beschrieben hat. Und in der Tat finden sich bei diesem Instrument die Bedingungen für den telezentrischen Strahlengang sehr häufig verwirklicht. Herr S. Finsterwalder hat den Verfasser darauf hingewiesen, daß man sich des telezentrischen Strahlenganges mit Vorteil bedienen könne, um mit Hilfe der Photographie exakte Grundund Aufrisse von kleinen Gegenständen herzustellen. Die Korrektionsbedingungen, die in diesem Falle an die optischen Systeme zu stellen sind, lassen sich ohne Schwierigkeit erfüllen.

Man kann nun noch einen Schritt weiter gehen und sich bemühen, die Eintrittspupille vor die Objekte zu legen, so daß gerade die vom Beobachter weiter entfernten Objekte unter größeren Gesichtswinkeln erscheinen. Ein solcher Versuch erscheint zunächst aussichtslos, weil er im Widerspruch zu der Erkenntnis zu stehen scheint, daß alle durch optische Mittel realisierbaren Abbildungen rechtläufig 1) sind. Da nun das normale Auge hinter den Bildern liegen muß, wenn es sie wahrnehmen soll, so müßte auch die Eintrittspupille des Systems hinter den Objekten liegen. Dieser Schluß ist ganz bündig, wenn Bilder und Auge nicht durch die Unstetigkeitsebene des Bildraums getrennt sind. Ist das aber der Fall, so kann infolge der gegenseitigen Durchdringung des Objekt- und des Bildraums die gewünschte Lage des Projektionszentrums herbeigeführt werden. Das Ergebnis zeigt sich in der Figur 2. Es handelt sich dabei um ein kleines Hausmodell von 40 mm Länge, 7 mm Breite, 10 mm Seitenwand- und 15 mm Firsthöhe. (In der Figur 3 ist es in gewohnter Weise aufgenommen dargestellt.) Es war hinter einer Linse von 8 cm Brennweite und dem zweckmäßigerweise besonders großen Öffnungsverhältnis von 1:1 aufgestellt und durch sie hindurch mit einem photographischen Objektiv aufgenommen worden, dessen Eintrittspupille um mehr als 8 cm von der Vorderfläche der

¹⁾ Unter "Rechtläufigkeit" ist dabei diejenige Eigentümlichkeit der Abbildung zu verstehen, nach welcher die Bildpunkte im Sinne der Lichtrichtung dieselbe (nicht die entgegengesetzte) Reihenfolge einnehmen wie die zugehörigen Objektpunkte.

Linse entfernt war. Da die hinteren Teile des Modells größer erscheinen als die vorderen, so gestattet dieser Strahlengang,

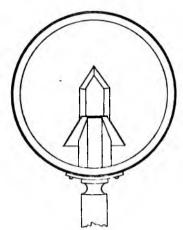


Fig. 2. Das Hausmodell in unnatürlicher Perspektive.

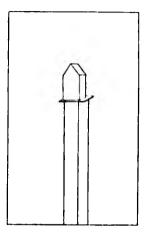


Fig. 3. Das Hausmodell in natürlicher Perspektive.

mit einem Auge "um das Objekt herumzusehen", wie Herr S. Finsterwalder das Auffallende dieser Darstellungsart kurz bezeichnet.

Geht man nun auf den Abbildungsvorgang etwas näher ein, so mag dazu die rein schematische, einen Meridianschnitt darstellende Figur 4 dienen. Die Linse L mit den Brenn-

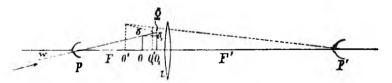


Fig. 4. Eine schematische Darstellung des hyperzentrischen Strahlenganges durch die Wiedergabe des Meridianschnitts.

P Objektauge, P' Auge im Bildraum. Die auf den Objektraum bezüglichen Graden sind ausgezogen, die den Bildraum betreffenden gestrichelt.

punkten F und F' sei vor dem als Objekt dienenden Würfelskelett $OO_1\ \overline{O}_1\ \overline{O}$ aufgestellt. Das beobachtende Auge befinde

sich in dem Achsenpunkte P und werde durch die Linse reell und umgekehrt in dem Objektauge P, also anscheinend vor dem Objekt abgebildet. Es sei ferner angenommen, daß auf die dem Beobachter zugekehrte, durch O, gehende Würfelfläche akkommodiert werde. Alsdann ist die Konstruktion des objektseitigen Abbildes einfach: von P aus werden alle Punkte des Würfelskeletts in die durch O, gehende Einstellungsebene projiziert, und man sieht ohne weiteres, daß die durch O gehende Würfelfläche OO in der Einstellungsebene größer wird $\{O, \Omega\}$ als die durch O, gehende, näherliegende O, O, \ldots Es ist außerdem des leichteren Verständnisses wegen das Bildrelief des Würfelskeletts gezeichnet worden, so daß man auch einsieht, wie dieser Effekt im Bildraume zustande kommt. scheinbare Widerspruch mit dem Gesetz der rechtläufigen Abbildung löst sich durch die Betrachtung der Lichtrichtung: Die auf P treffenden Strahlen von Punkten des Würfelskeletts gelangen, da eine Lichtrichtung von links nach rechts vorausgesetzt ist, erst dann nach P, wenn sie das Unendliche passiert haben und zwar in einer, mit der anfänglichen übereinstimmenden Richtung. P liegt also wirklich für diese Betrachtung hinter OO_1 . Da das Objektauge P zwar umgekehrt ist, aber auch abwärts gerichtete Gesichtswinkel w erhält, so wird im Bildraume das Bildrelief aufrecht wahrgenommen. Die unnatürliche Perspektive aber bleibt bestehen, und man kann sich nicht überreden, daß sie einem Würfelskelett angehören könne. Man faßt das Gebilde stets in einer ganz bestimmten Weise verzerrt auf, weil eine solche Erscheinungsform des Würfelskeletts jeder Erfahrung widerspricht. Sie mag, den vorigen Namen entsprechend, hyperzentrisch beißen.

Schon oben war darauf hingedeutet worden, daß diese Erscheinungen am deutlichsten auftreten, wenn das Öffnungsverhältnis des abbildenden Systems besonders groß ist, und man sieht auch leicht ein, daß dafür große Winkel w vorzüglich günstig sind. Systeme mit solchen Eigenschaften finden sich namentlich in Hohlspiegeln, die sich ja auch hinsichtlich der Aufhebung der sphärischen und chromatischen Abweichungen

vor gleich einfachen, rein dioptrischen Konstruktionen auszeichnen.

Es muß sich daher diese Erscheinung häufig, namentlich beim Experimentieren mit Hohlspiegeln geradezu aufgedrängt haben; sie scheint aber nicht weiter beachtet worden zu sein, oder man hat sie einfach auf die Abweichungen der Systeme abgeschoben. Jedenfalls wurde kein Anhaltspunkt dafür gefunden, daß man bisher versucht habe, sie aus der veränderten Strahlenbegrenzung zu erklären, ähnlich wie das E. Abbe für die entsprechenden Verhältnisse beim telezentrischen Strahlengange getan hat.

Die Tiefenwahrnehmung beim beidäugigen Sehen.

Durch die gleichzeitige Verwendung beider Augen beim Sehen ist die Möglichkeit einer Tiefenwahrnehmung gegeben. Man sieht das aus der nachfolgenden schematischen Figur 5



Fig. 5. Der Strahlenverlauf von den Fußpunkten in der Medianebene befindlicher Objekte.

am einfachsten, bei der die Annahme gemacht worden ist, daß die beiden verschieden entfernten Punkte $O_1,\,O_2$ in dem Schnitt der Horizontal- und der Medianebene liegen. Hierbei erkennt man leicht, daß die nach dem ferneren Punkte gerichteten Strahlen in dem vor den Augen liegenden Gebiet mehr schläfen-, die nach dem näheren mehr nasenwärts verlaufen. Die Betrachtung dieses ganz einfachen Falles mag hier genügen: die allgemeineren Fälle würden sich ohne Schwierigkeit durch die Einführung der Helmholtzischen stereoskopischen oder der ihnen entsprechenden angularen Differenzen erledigen lassen. Die Tiefenwahrnehmung ist auf diese Weise nicht nur körper-

lichen Objekten gegenüber möglich, sie findet auch dem von einem beliebigen optischen System gelieferten Bildrelief gegenüber statt und führt zu einem richtigen (d. h. mit dem durch die Betrachtung der Objekte selbst gewonnenen Resultat übereinstimmenden) Ergebnis, weil alle optischen Systeme, wie schon bemerkt, rechtläufig sind, also die Richtung der Tiefenausdehnung der Objekte nicht verändern. E. Abbe¹) scheint zuerst auf diese allgemeine Eigenschaft des Bildreliefs optischer Instrumente hingewiesen zu haben, um daraus einen Schluß auf die beidäugige Tiefenwahrnehmung am Bildrelief zu ziehen.

Versucht man aber auch in diesem Falle die Betrachtung auf die Vorgänge im Objektraume zu stützen, so muß man die beiden Augen durch das optische System nach der Objektseite zu abbilden. Macht man hierfür die vereinfachende (und bei einfachen optischen Systemen - z. B. einer Graphoskoplinse oder einem Hohlspiegel — in der Regel zutreffende) Annahme eines reellen Bildreliefs, so liegen die Objektaugen sicher hinter den Objekten. Da ein einheitlich wirkendes optisches System keine Veränderung der natürlichen Lage der beiden Augen hervorbringen kann, so bleibt unter diesen Umständen, d. h. bei der Abbildung durch ein einheitlich wirkendes optisches System, die Bedingung des beidäugigen natürlichen Sehens oder, wie hier gesagt werden soll, die orthopische2) Augenstellung erhalten. Strahlen von näher gelegenen Objektpunkten verlaufen auch im Objektraume mehr nasenwärts, von ferneren mehr schläfenwärts. Zu den Einzelheiten der Abbildung kann man noch folgendes bemerken: Wird die Gesichtsfläche 📆 als Ganzes bei jener Abbildung durch das optische System einfach umgekehrt ... oder umgekehrt und spiegelverkehrt, so zeigt sich das bei der Betrachtung darin, daß das Objekt zwar in seiner Tiefenanordnung ungeändert bleibt, aber sonst einfach

¹⁾ On the conditions of orthoscopic and pseudoscopic effects in the binocular microscope. Journ. Roy. Micr. Soc. 1881 (2), Bd. 1, 203-211, S. 207. Siehe auch die Übersetzung in den auf S. 490 zitierten gesammelten Abhandlungen auf S. 319.

²⁾ Nach Analogie von κύκλωψ und kyklopisch gebildet.

umgekehrt oder umgekehrt und spiegelverkehrt wird. Es ist das eine notwendige Folge der Änderung, die der Sinn der objektseitigen Gesichtswinkel w durch das optische System für jedes Einzelauge erleidet.

Man kann also auch nach der hier durchgeführten Betrachtungsweise, bei der die Vorgänge im Objektraume berücksichtigt werden, keine Anderung der Tiefenanordnung erwarten, wenn es sich um die Abbildung durch ein einheitlich wirkendes optisches System handelt.

Die Aufhebung der natürlichen Augenstellung.

Schon sehr früh — gegen das Ende des siebzehnten Jahrhunderts — hatte ein unter dem Klosternamen Chérubin D'Orléans bekannt gewordener Kapuzinermönch ein binokulares Instrument hergestellt, wodurch für die Objektaugen die natürliche Stellung aufgehoben wurde. Er richtete nämlich zwei gewöhnliche bildumkehrende Mikroskope auf einen und denselben Objektpunkt und wählte die Neigung der Rohre so, daß das rechte Okular von dem rechten und das linke Okular von dem linken Auge benutzt werden konnte. Man sieht leicht

Fig. 6. Die Stellung der ganz schematisch gezeichneten Objektaugen im Chérubinschen Doppelmikroskop.

ein, daß bei der Abbildung der beiden Augen des Beobachters in den Objektraum ein jedes für sich umgekehrt wurde, so daß sich nach dem hier gebrauchten Schema der in der Figur 6 dargestellte Fall ergab. Die Vermutung liegt nahe, daß mit einer solchen Änderung der natürlichen Augenstellung eine Änderung der Tiefenanordnung im Bildraume verbunden sein müsse, und so ist es auch

tatsächlich. Konstruiert man jenes einfache Schema in der Figur 7 wieder, so sieht man, daß für jedes der beiden Objektaugen die Strahlen von dem ferneren Punkte mehr nasen-, die von dem näheren mehr schläfenwärts verlaufen. Zeichnet man nunmehr die Figur 8 für den Bildraum, wo die Augen natürlich die orthopische Stellung haben müssen und sucht dort die entsprechenden Strahlen auf, so müssen die vorher mehr schläfenwärts liegenden Strahlen auch hier wieder mehr schläfenwärts liegen, da jedes einzelne optische System seine Meridianebene — abgesehen von der hier nicht in Betracht

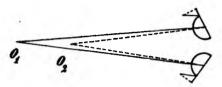


Fig. 7. Der Strahlenverlauf von den Fußpunkten in der Medianebene befindlicher Objekte bei chiastopischer Stellung der schematisch gezeichneten Objektaugen.

Fig. 8. Der der Figur 7 entsprechende Strahlengang im Bildraume.

kommenden Nachbarschaft der objektseitigen Brennebene — zusammenhängend abbildet. Die ausgezogenen und die gestrichelten Strahlen definieren also im Bildraume, wie man auf der Figur 8 sieht, zwei Punkte $O_{\bf i}'$, $O_{\bf i}'$ in umgekehrter Tiefenfolge.

Man erhält auf diese Weise die Verwirklichung einer rückläufigen Abbildung, die bei einheitlich wirkenden optischen Systemen ausgeschlossen war. Sie kommt in binokularen Instrumenten zustande, wenn durch die Wirkung der getrennten Systeme die Gesichtsfläche inicht zusammenhängend, sondern unstetig

Bei dieser großen Wichtigkeit der Augenstellung für die durch das beidäugige Sehen vermittelte Anschauung der Tiefengliederung sei die unnatürliche (gekreuzte) Stellung als chiastopische bezeichnet. Wird sie im Objektraum hervorgerufen, ohne daß sie von einer Änderung der Perspektive begleitet wird, so erhält man eine Umkehrung der Abstände, die aber nur bei beidäugiger Beobachtung zwingend ist; bei einäugiger Betrachtung kann die Täuschung verschwinden oder überhaupt nicht zustande kommen.

Während diese Änderung des Raumbildes, die bei dem Doppelmikroskop von Chérubin d'Orléans zweifellos vorhanden war, zu jener Zeit unbemerkt blieb, erregte sie die Aufmerksamkeit Ch. Wheatstones, der sie 1852 zuerst unter dem Namen der Pseudoskopie beschrieb. Er gab damals mehrere Möglichkeiten der Verwirklichung an, und zwar bestand der ihm besonders geeignet erscheinende Apparat aus zwei Amicischen Reflexionsprismen, die, wie man aus der Figur 9 sieht, die chiastopische Augenstellung im Objektraume

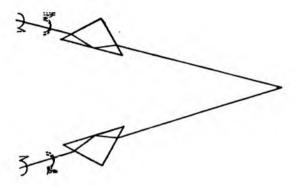


Fig. 9. Ein schematischer Horizontalschnitt durch das Wheatstonesche Pseudoskop.
Die Objektaugen sind punktiert, um ihre mangelhafte Abbildung anzudeuten.

herbeiführten. Durch die Punktierung der ganz schematisch gezeichneten Objektaugen soll angedeutet werden, daß sie infolge der Abbildung durch starke Brechungen in Prismen von beträchtlicher Dicke mit ziemlichem Astigmatismus behaftet sind. Bei den Versuchen schadet dieser Bildfehler übrigens nicht wesentlich, aber das Gesichtsfeld des Instruments ist nur gering, und nicht jedem Beobachter gelingen die damit anzustellenden Versuche. Am besten eignen sich dafür Skelette einfacher stereometrischer Körper, weil hier keine Schatten das Zustandekommen des pseudoskopischen Eindrucks hindern, und weil sich die Inversion eines stereometrischen Skeletts eben so leicht vorstellen läßt wie das Skelett selbst.

Die von Ch. Wheatstone gegebene Erklärung des pseudoskopischen Raumbildes war vollständig zutreffend, beruhte aber auf der Betrachtung des Bildraums, und so kam es, daß damals der allgemeinere Grund der Pseudoskopie nicht bemerkt wurde.

In den 50er und 60er Jahren des vorigen Jahrhunderts beschäftigten sich tüchtige Mikroskopiker namentlich englischer Zunge mit der Konstruktion eines stereoskopischen Mikroskops, und sie sahen, da nun einmal das Interesse auf die pseudoskopische Wahrnehmung gerichtet war, wie leicht man zu einem solchen, hier meistens unerwünschten Eindruck kommen könne. Wenn es ihren scharfsinnigen Bemühungen auch gelang, durch eine zweckmäßige Verfügung über die Konstruktionselemente den gewünschten stereoskopischen Eindruck zu sichern, so haben sie doch an der Klärung des allgemeinen Sachverhalts nicht gearbeitet.

Dies geschah erst durch E. Abbe, der, ohne eingehende Kenntnis dieser Entwicklung des Binokularmikroskops in England, 1880 ein stereoskopisches Okular baute, um das Gebiet der stereoskopischen Mikroskopie auch auf dem Kontinent auszudehnen. Er entwickelte als erster eine zusammenfassende Theorie, wenn auch nicht aller stereoskopischen Mikroskope, so doch aller derer, die mit einem einfachen Objektiv ausgerüstet waren, und die auch zu jener Zeit allein in Betracht kamen. Zu gleicher Zeit gab er auch ein überraschend einfaches Merkmal an.1) wonach man bei einem jeden dieser Instrumente die orthoskopische oder die pseudoskopische Wirkung sofort voraussagen konnte. Diese Abbesche Regel lautet in ihrer einfachsten Form: "Die einzige notwendige Bedingung für die orthoskopische Wirkung in irgend einem binokularen Apparat ist, daß die betreffenden Halbkreise entsprechend dem Schema O dargestellt werden können, und für die pseudoskopische Wirkung, daß sie dem Schema P entsprechend liegen." Dabei beziehen sich die in den Figuren 10 und 11 wiedergegebenen Abbeschen Zeichnungen auf die Austrittspupillen,

¹⁾ Beschreibung eines neuen stereoskopischen Oculars nebst allgemeinen Bemerkungen über die Bedingungen mikro-stereoskopischer Beobachtung. Carls Rep. 1881, 17. 197—224, S. 208. (In den ges. Abh. S. 255 und On the conditions etc. S. 203/204 und in der Übers. 314.)

die bei allen Binokularmikroskopen halbkreisförmig sind, wo die Eintrittspupille des Objektivs geometrisch in eine rechte und eine linke Hälfte geteilt und je einem der beiden Augen zugeordnet wird. Man sieht leicht ein, daß die Abbesche Regel in allen von ihm behandelten Fällen mit der hier gegebenen Formulierung übereinstimmt; denn schreibt man darunter die hier benutzten Symbole, wie das in den Figuren 12 und 13 geschehen ist, und beachtet man, daß die beiden Aus-

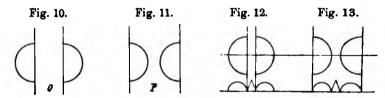


Fig. 10 und 11. E. Abbes bildseitiges Kriterium für die orthoskopische und die pseudoskopische Wirkung der binokularen Mikroskope mit gemeinsamem Objektiv.

Fig. 12 und 13. Die Zurückführung des Abbeschen Kriteriums auf die orthopische und die chiastopische Stellung der Objektaugen.

trittspupillen zusammen im Objektraume die vollständige kreisförmige Eintrittspupille des Instruments ergeben müssen, so wird man nur in dem einen Falle (der Figur 12) auf die orthopische Augenstellung im Objektraume geführt, im anderen (der Figur 13) muß sich die chiastopische ergeben. Es ist zu bedauern, daß E. Abbe für den allgemeinen Fall die Lösung entgangen ist. Er hat sich offenbar durch die unbestreitbare Eleganz seines Satzes in den besonderen von ihm behandelten Fällen verleiten lassen, von seinem so folgenreichen Prinzip abzugehen, die Betrachtung auf die Vorgänge im Objektraume aufzubauen, und so ist er darum gekommen, eine Theorie der gesamten binokularen Instrumente zu geben.

Wenn sich vorher allgemein hatte nachweisen lassen, daß eine pseudoskopische Wahrnehmung durch einheitlich wirkende optische Instrumente nicht verwirklicht werden kann, so hat sich nunmehr gezeigt, daß nicht immer das Vorhandensein zweier völlig getrennter Instrumente für die beiden Augen

nötig ist; es genügt auch, hinter einem gemeinsamen Objektivteil eine Diskontinuitätsstelle einzuführen, so daß die eine Hälfte der Eintrittspupille nur dem rechten, die andere nur dem linken Auge zugeordnet ist.

Eine Mittelstellung zwischen den beiden im vorhergehenden behandelten Möglichkeiten nimmt der Fall ein, daß beide Augen im Objektraume zusammenfallen, oder wie man es auch nennen kann, der Fall der synopischen Augenstellung. Er wurde anscheinend zuerst beobachtet, als man in den 50 er Jahren des vorigen Jahrhunderts identische Bilder im Stereoskop betrachtete. Hatte man hier unbewußt stets an der entozentrischen Perspektive festgehalten, so machten englische Mikroskopiker in der Mitte der 60er Jahre einen wichtigen Fortschritt darüber hinaus. Bei der besten der damals vorgeschlagenen Einrichtungen - sie stammte von F. H. Wenham her - wurde mit Hilfe einer sowohl durchlässigen als auch spiegelnden Schicht jeder einzelne Strahl in zwei Teile gespalten, um je einem der beiden Augen zugeführt zu werden. Es erhielt dann jedes Auge ein (abgesehen von den Helligkeitsunterschieden) identisches Bild, und zwar bei starken Mikroskopobjektiven ein Bild in telezentrischer Perspektive. Eine solche Beobachtung im zweiäugigen (indifferenten) Sehen bietet doch noch einen Vorteil für den Beobachter, insofern als die Beobachtung mit beiden Augen bequemer und angenehmer ist als die mit einem Einzelauge. Für makroskopische Objekte mit entozentrischer Perspektive hat man den Vorzug der synopischen Augenstellung schon in den 50er Jahren gekannt; hier kommt noch hinzu, daß es sich bei Landschaftsaufnahmen um angenähert bekannte Gegenstände in weiter Entfernung handelt, bei denen die Verschiedenheit eigentlich stereoskopischer Halbbilder keine große Rolle spielt. In solchen Fällen läßt die gewohnte und bequeme Beobachtung mit beiden Augen um so leichter die auf der Erfahrung beruhende Tiefendeutung als Ersatz für die Tiefenwahrnehmung eintreten.

Eine Verbindung der verschiedenen Bedingungen des einäugigen und des beidäugigen Sehens miteinander ist aber ganz allgemein möglich, da sie voneinander ganz unabhängig sind. Es sei hier ein Schema mitgeteilt, das eine vollständige Übersicht über die überhaupt möglichen Bedingungen des Sehens mit beiden Augen liefert, da es mit einem Eingange für die drei monokularen und einem solchen für die drei binokularen Bedingungen versehen ist. Es ist dabei für die verschiedenen Formen der Erscheinung auch die Zeit angegeben worden, zu der sie zuerst bemerkt worden sind. (Siehe S. 503.)

Handelt es sich jetzt darum, alle diese neun möglichen Formen des beidäugigen Sehens wirklich zu veranschaulichen, so empfiehlt sich vornehmlich die auf Taf. IV gewählte Darstellung mit Hilfe von Stereogrammen. Ein Stereoskop ist dabei nicht notwendig. Alle Beobachter, die ihren Augenachsen eine nahezu parallele Richtung geben können, werden ohne weiteres den beabsichtigten Eindruck erhalten. Alle, die diese Fähigkeit nicht haben, werden zweckmäßig nach dem besonders für Kurzsichtige geeigneten Plane verfahren, wie er in Figur 14 nach der mündlichen Angabe von Herrn A. Köhler dargestellt worden ist. Eine Scheibe gewöhnlichen Fenster-

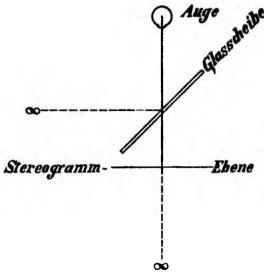


Fig. 14. Die Köhlersche Methode zur Erleichterung der Betrachtung von Stereogrammen mit parallel gerichteten Augenachsen.

gigen	einäugigen Sehens	Der Strahlengang ist					
beidäugigen Sehens		entozentrisch I		telezentrisch II		hyperzentrisch III	
Die Augenstellung ist	orthopisch	I1 Das natürliche Sehen endlich ent Objekte. Erste Erkenntnis der Beding durch Ch. Wheatstone 1838	gungen	II 1 Das Raumbild in orthoskopischen Binokularmikroskopen. J. L. Riddell 1852/3.	der wichtigsten Funkte der Wirkung mit Hilfe Strahlenbegrenzung durch E. Abbe 1880.	III 1	Die Erscheinungen mit hyperzentrischer Perspektive scheinen bisher nicht untersucht worden zu sein.
	synopisch	I2 Die Betrachtung zweier iden- tischer Bilder im Stereoskop. Mitte der 50 er Jahre.	Beobachtungen besten Fubilkation	II 2 Das Raumbild in Binokular- mikroskopen zum indifferen- ten Sehen. Powell & Lealand vor 1866.		III 2	
	chiastopisch co	Is Die Wheatstoneschen Pseudo- skopien. 1852.	Erste unbewußte Beol reits in der ersten Ch. Wheatstone	IIs Das Raumbild in pseudoskopi- schen Binokularmikroskopen. Chérubin d'Orléans 1677. F. H. Wenham 1853.	Erklärung der wich der Strahlenb	III3	

glases wird unter etwa 45 Graden Neigung so über das Stereogramm gehalten, daß ein entfernter Gegenstand an den unbelegten Flächen gespiegelt wird und unter der Ebene des Stereogramms erscheint. Fixiert man dieses meistens sehr lichtschwache Spiegelbild, richtet indessen seine Aufmerksamkeit auf die beiden Halbbilder, auf die auch akkommodiert werden muß, so verschmelzen diese ziemlich leicht zu einem Raumbilde.

Vor die Besprechung der neun Stereogramme wird zweckmäßig eine kurze Erläuterung der Verhältnisse eingeschoben. wie sie bei den gebräuchlichen Doppelkameras mit parallelen

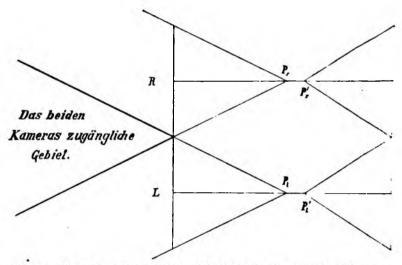


Fig. 15. Ein schematischer Horizontalschnitt durch eine Doppelkamera mit parallelen Achsen.

Die Objektive sind im allgemeinen Falle als unsymmetrische Konstruktionen vorausgesetzt.

Achsen herrschen. Stellt die Figur 15 eine solche Einrichtung im Horizontalschnitt dar, so ist es bei verzeichnungsfreien Objektiven klar, daß jedes Halbbild L, R für die Mitte der dazugehörigen Eintrittspupille P_l , P_r zu den aufgenommenen Objekten perspektivisch ist. (Um die photographischen Kopien des Doppelnegativs in diese Lage zu bringen, müssen sie zerschnitten werden, wenn sie mit dem gewöhnlichen Kontakt-

druckverfahren hergestellt worden sind.) Aus der Entstehung der Halbbilder ist klar, daß - mit E. Abbe zu reden -L eine durchaus links-, R eine durchaus rechtsäugige Perspektive ist. Diese ein- für allemal festgelegte Beziehung kann man in einer einfachen Weise dadurch andeuten, daß man wie in der Figur 16 um die Eintrittspupille das entsprechende Augenzeichen beschreibt. Man sieht dann ohne weiteres ein, daß sich in der Figur 17 bei einer Vertauschung der beiden Halbbilder ein pseudoskopisches Raumbild ergeben muß. Denn auf Grund derselben Überlegungen, die bei der Einführung der chiastopischen Augenstellung gemacht worden waren (es handelte sich darum, daß die Strahlenpaare mehr nasen- oder mehr schläfenwärts verliefen), läßt sich auch der hier angenommene Fall erledigen. Es entspricht dem unendlich fernen und einem reellen, vor dem Beobachter liegenden Punkte des orthomorphen Raumbildes der unendlich ferne und ein virtueller, hinter dem Beobachter gelegener Punkt des pseudomorphen Raumbildes, und - was von besonderer Wichtigkeit

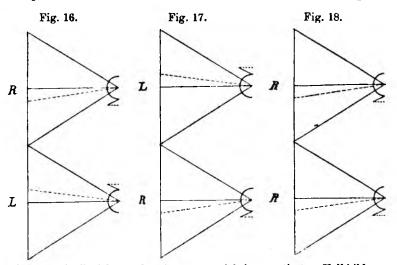


Fig. 16. Die Beziehung der Augen zu richtig montierten Halbbildern. Das Äquivalent zur orthopischen Stellung der Objektaugen.

Fig. 17. Die Beziehung der Augen zu gekreuzt montierten Halbbildern.
Das Äquivalent zur chiastopischen Stellung der Objektaugen.

Fig. 18. Die Beziehung der Augen zu identischen Halbbildern.
Das Äquivalent zur synopischen Stellung der Objektaugen.

ist — die Reihenfolge der Punkte ist im ersten Falle der Lichtrichtung gleich, im zweiten ihr entgegengesetzt.

Setzt man schließlich in der Figur 18 beiden Augen das gleiche Halbbild vor, so erhält man die synopische Augenstellung, und zwar wurde in den hier dargestellten Fällen die von dem rechten Objektiv gelieferte Abbildskopie verdoppelt.

Dementsprechend sind also nur drei stereoskopische Aufnahmen gemacht worden, nämlich I₁, II₁ und III₁. Alle mit 2 bezeichneten Bildpaare sind durch Verdoppelung des rechten Halbbildes, alle mit 3 bezeichneten durch Vertauschung der beiden Halbbilder gegeneinander hergestellt worden.

Das Objekt war in allen Fällen das gleiche Skelett einer geraden Säule von quadratischer Grundfläche, deren Länge 39 mm betrug bei 20 mm Höhe und Breite; ihre Vorderfläche wurde durch eine der oberen Kante aufgesetzte Perle kenntlich gemacht. Es war schon oben darauf hingewiesen worden, daß namentlich pseudomorphe Raumbilder am sichersten mit solchen auf die Umrisse beschränkten Objekten gelingen. ersten sechs Darstellungen findet sich nur das Säulenskelett vor, bei den letzten drei ist auch die ziemlich tiefe Fassung der Linsenkombination sichtbar, die den hyperzentrischen Strahlengang hervorbrachte. Bei dem Stereogramm III3 ist die Rückläufigkeit der Abbilduug sehr deutlich zu erkennen. Man sieht sehr gut in der Richtung auf den Beobachter zu zuhinterst den äußersten Rand der Linsenfassung, dann ihren inneren Rand und schließlich das in sich invertierte Säulenskelett. Aus diesem Raumbilde wird auch klar, daß man zweckmäßig den hyperzentrischen Strahlengang wählen wird, wenn es sich darum handelt, durch optische Mittel aus einer vorliegenden Hohlform ein Urteil über den danach anzufertigenden Abguß zu Denn nur in diesem Falle wird die Perspektive mit der einigermaßen übereinstimmen, die man bei der Betrachtung des Abgusses erhalten würde. Der Verfasser verdankt einem seiner Kollegen den Hinweis auf diesen Umstand.

Für die Anfertigung der photographischen Aufnahmen ist er Herrn R. Schüttauf verpflichtet.