Sitzungsberichte

der

mathematisch-physikalischen Classe

der

k. b. Akademie der Wissenschaften

zu München.

Moneben.

Voyley Jan by Skydomic 1900 Die Endzahlenwerte für die untersuchten Alkohole sind:

			$k \cdot M \cdot \delta$
C H ₈ OH:	Methyl-Alkohol		-0.185 ± 0.004
$C_2 H_5 OH:$	Aethyl-Alkohol		-0.296 ± 0.003
C ₃ H ₇ OH:	Propyl-Alkohol.	Normal	0.392 <u>+</u> 0.009
		Iso.	-0.409 ± 0.007
C4 H9 OH:	Butyl-Alkohol.	Normal	-0.520 ± 0.009
7	P	lso.	-0.541 ± 0.008
	Trimethylcarbinol		-0.482 ± 0.014
C ₅ H ₁₁ OH:	Amyl-Alkohol.	Iso.	-0.599 ± 0.014
,	Dimethylaethylcarbinol		-0.563 ± 0.011 .

Ueber die magnetische Susceptibilität organischer Substanzen der aromatischen Reihe.

Von Hugo Freitag.

(Eingelaufen 10. Februar.)

Die Untersuchung wurde nach der von G. Jäger und St. Meyer in den Wiener Ak. Berichten, math.-nat. Kl. CVI, Abteilung II, angegebenen Methode ausgeführt und ergab folgende Resultate:

- 1) Der Molekularmagnetismus ist für die untersuchten Präparate keine rein additive Eigenschaft, sondern von der chemischen Konstitution abhängig.
- 2) Sämtliche untersuchte Flüssigkeiten zeigten sich diamagnetisch.
 - 3) Der Diamagnetismus nimmt mit wachsender Feldstärke ab.
- 4) Zwischen dem Molekularmagnetismus k_m und der Feldstärke \mathfrak{H} besteht mit guter Annäherung die Beziehung:

 $k_m \mathfrak{H} = \text{konst.}$

Als Zahlenwerte dieses konstanten Produkts wurden gefunden:

		$k_m \cdot \delta$
C8 H10:	Orthoxylol	-0.734 ± 0.006
	Metaxylol	-0.718 ± 0.010
ъ	Paraxylol	0.685 ± 0.014
,	Aethylbenzol	-0.675 ± 0.006
C9 H12:	Pseudocumol	0.823 ± 0.010
	Mesitylen	-0.778 ± 0.011 .