Von der

Hesse'schen Determinante

der

Hesse'schen Fläche

einer Fläche dritter Ordnung.

Von

Gustav Bauer.

Hesse'schen Determinante

Hesse'schen Fläche

eider Fläche dritter Ordnung

Gustav Baner.

Hesse'schen Determinante

der

Hesse'schen Fläche einer Fläche 3. Ordnung.

Von

Gustav Bauer.

Es ist einer der bekanntesten und schönsten Sätze aus der Theorie der Curven 3. Ordnung, dass die Inflexionspunkte einer Curve 3. Ordnung, welche von ihrer Hesse'schen Curve auf ihr ausgeschnitten werden, zugleich auch die Inflexionspunkte dieser Hesse'schen Curve sind. Dieser Satz drückt sich analytisch dadurch aus, dass die Hesse'sche Determinante der Hesse'schen Curve einer Curve 3. Ordnung in der Form sich ergibt

 $H(H) = 8 S^2 U + 2 T H$

wo U=o die Gleichung der Curve 3. Ordnung, H=o die Gleichung ihrer Hesse'schen Curve ist und S und T bekannte Invarianten von U darstellen.

Es ist nun sehr bemerkenswerth, dass ganz analoge Verhältnisse auch bei Flächen dritter Ordnung statthaben. Ist U = 0 die Gleichung einer Fläche 3. Ordnung, so ist die Gleichung ihrer Hesse'schen Fläche H = 0 vierter Ordnung und die parabolische Curve der Fläche U, Durchschnitt derselben mit der Fläche H, ist mithin von der 12. Ordnung. Die Hesse'sche Fläche von der Hesse'schen Fläche H, welche auf letzterer die parabolische Curve ausschneidet, ist eine Fläche 8. Ordnung. Es soll nun im folgenden gezeigt werden, dass die Gleichung dieser Hesse'schen Fläche der Hesse'schen Fläche von U in der Form dargestellt werden kann

H(H) = 36 PU - 3 QH = 0,

wo P diejenige Covariante 5. Ordnung von U ist, welche die fünf Ebenen des Pentaeders darstellt, während Q eine andere Covariante 4. Ordnung ist. Aus dieser Darstellung von H (H) folgt sofort, dass der Durchschnitt der Fläche H mit ihrer Hesse'schen Fläche, d. h. die parabolische Curve auf H, aus dem Durchschnitt von U mit H, d. i. der parabolischen Curve von U und aus den Schnitten der Pentaederebenen mit H, also den 10 auf H liegenden Pentaederkanten, jede doppelt gezählt, besteht. Da die parabolische Curve von U von der zwölften Ordnung ist, so ergibt sich der Durchschnitt von H mit seiner Hesse'schen Fläche von der Ordnung 12 + 2.10 = 32, wie es sein muss.

Da die Pentaederkanten als Theile der parabolischen Curve der Hesse'schen Fläche doppelt zu zählen sind, so ändert sich die Art der Krümmung dieser Fläche nicht bei dem Ueberschreiten einer dieser Geraden und man kann daher sagen: Die Durchdringungslinie einer Fläche dritter Ordnung und ihrer Hesse'schen bildet die Grenzlinie zwischen dem elliptisch und dem hyperbolisch-gekrümmten Theil sowohl auf der einen wie auf der andern Fläche.

1.

Um den obigen Satz zu erweisen, nehmen wir die Gleichung der Fläche 3. Ordnung in der Form von fünf Cuben an

$$U = a_1 z_1^3 + a_2 z_2^3 + a_3 z_3^3 + a_4 z_4^3 + a_5 z_5^3 = 0,$$
 (1)

wo die Gleichungen

$$z_1=0,\; z_2=0,\; z_3=0,\; z_4=0,\; z_5=0$$

die Gleichungen der Ebenen des Pentaeders der Fläche repräsentiren und die in den z enthaltenen constanten Faktoren so gewählt sind, dass sie die identische Relation erfüllen

$$z_1 + z_2 + z_3 + z_4 + z_5 = 0.$$
 (2)

Indem wir diese Annahme machen, setzen wir voraus, dass die Fläche U ein vollkommen bestimmtes Pentaeder habe und auch nicht zwei oder mehrere Ebenen des Pentaeders zusammenfallen. 1) Dann er-

¹⁾ Rodenberg, "Zur Classifikation der Flächen dritter Ordnung." Math. Ann. Bd. XIV p. 46.

gibt sich die Hesse'sche Determinante von U, abgesehen von einem Zahlenfaktor, bekanntlich in der Form

$$H = \sum a_1 a_2 a_3 a_4 z_1 z_2 z_3 z_4 \qquad (3)$$

und hieraus erhält man, wenn man bemerkt, dass vermöge der Relation (2) $\frac{d\,z_5}{d\,z_1}=-1$, u. s. w. ist, für die zweiten Differential-Coefficienten von H, indem wir $\frac{d^2\,H}{dz_1\,dz_k}=H_{i\,\varepsilon}$ setzen,

$$egin{aligned} &\mathrm{H_{11}} = -2\ a_1\ a_5\ (a_3\ a_4\ z_3\ z_4\ +\ a_2\ a_4\ z_2\ z_4\ +\ a_2\ a_3\ z_2\ z_3), \\ &\mathrm{H_{12}} = a_1\ a_2\ (a_3\ a_4\ z_3\ z_4\ +\ a_3\ a_5\ z_3\ z_5\ +\ a_4\ a_5\ z_4\ z_5) \\ &-a_2\ a_5\ (a_1\ a_3\ z_1\ z_3\ +\ a_1\ a_4\ z_1\ z_4\ +\ a_3\ a_4\ z_3\ z_4) \\ &-a_1\ a_5\ (a_2\ a_3\ z_2\ z_3\ +\ a_2\ a_4\ z_2\ z_4\ +\ a_3\ a_4\ z_3\ z_4), \end{aligned}$$

u. s. f.

Setzen wir zur Abkürzung

$$\mathbf{a}_{\mathbf{i}} \mathbf{z}_{\mathbf{i}} = \mathbf{x}_{\mathbf{i}} \tag{4}$$

für i = 1, 2, 3, 4, 5, und

$$x_h x_i + x_i x_k + x_k x_h = (hik), \tag{5}$$

so hat man

$$\begin{split} \mathbf{H} &= \mathbf{\Sigma} \, \mathbf{x}_{1} \, \mathbf{x}_{2} \, \mathbf{x}_{3} \, \mathbf{x}_{4}, \\ \mathbf{H}_{11} &= -2 \, \mathbf{a}_{1} \, \mathbf{a}_{5} \, (2 \, 3 \, 4), \\ \mathbf{H}_{12} &= \mathbf{a}_{1} \, \mathbf{a}_{2} \, (3 \, 4 \, 5) \, - \, \mathbf{a}_{2} \, \mathbf{a}_{5} \, (1 \, 3 \, 4) \, - \, \mathbf{a}_{1} \, \mathbf{a}_{5} \, (2 \, 3 \, 4), \\ \mathbf{u}, \, \, \mathbf{s}, \, \, \mathbf{f}. \end{split}$$

und die Hesse'sche Determinante der Hesse'schen Fläche wird hiemit

$$H(H) \equiv \begin{pmatrix} H_{11}H_{12}H_{13}H_{14} \\ H_{21}H_{22}H_{23}H_{24} \\ H_{31}H_{32}H_{33}H_{34} \\ H_{41}H_{42}H_{43}H_{44} \end{pmatrix} = (7)$$

Um diese Determinante auf eine bequemere Form zu bringen, schreiben wir sie als Determinante fünften Grades, indem wir sie mit einer ersten Vertikalreihe aus den Elementen 1, 1, 1, 1, 1 bestehend rändern und die Stellen der letzten Horizontalreihe ausser dem ersten Element 1 mit Nullen besetzen. Wir addiren hierauf die erste Vertikalreihe, multiplicirt resp. mit $a_1 a_5 (234)$, $a_2 a_5 (134)$, $a_3 a_5 (124)$, $a_4 a_5 (123)$ zu der 2., 3., 4. und 5. Vertikalreihe. Wir schreiben die so veränderte Determinante sodann als Determinante sechsten Grades, indem wir eine erste Horizontalreihe bestehend aus den Elementen

011111

vorsetzen und die übrigen Elemente der letzten Vertikalreihe durch Nullen ausfüllen. Addirt man hierauf diese erste Horizontalreihe, multiplicirt resp. mit $a_1 a_5 (234)$, $a_2 a_5 (134)$, $a_3 a_5 (124)$, $a_4 a_5 (123)$ zu der 2., 3., 4. und 5. Horizontalreihe, so ergibt sich für H (H) folgender Ausdruck:

$$H\left(H\right) = - \begin{array}{|c|c|c|c|c|c|c|c|} \hline 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & a_1a_2(345) & a_1a_3(245) & a_1a_4(235) & a_1a_5(234) \\ 1 & a_1a_2(345) & 0 & a_2a_3(145) & a_2a_4(135) & a_2a_5(134) \\ 1 & a_1a_3(245) & a_2a_3(145) & 0 & a_3a_4(125) & a_3a_5(124) \\ 1 & a_1a_4(235) & a_2a_4(135) & a_3a_4(125) & 0 & a_4a_5(123) \\ 1 & a_1a_5(234) & a_2a_5(134) & a_3a_5(124) & a_4a_5(123) & 0 \\ \hline \end{array}$$

oder schliesslich in passenderer Form

Sei X_{11} der Coefficient von $\frac{1}{a_1^2}$ in dieser Determinante, abgesehen vom Faktor — $(a_1\,a_2\,a_3\,a_4\,a_5)^2$, so ist

$$\begin{split} \mathbf{X}_{11} &= -(145)^2 (123)^2 - (135)^2 (124)^2 - (134)^2 (125)^2 \\ &\quad + 2(145)(135)(123)(124) + 2(145)(134)(123)(125) \\ &\quad + 2(135)(134)(124)(125), \end{split}$$

oder, wenn

$$A = (145) (123), B = (135) (124), C = (134) (125)$$

gesetzt wird,

$$X_{II} = -A^{2} - B^{2} - C^{2} + 2AB + 2AC + 2BC$$

$$= -A(A - B - C) - B(B - A - C) - C(C - A - B)$$
 (9)

Da durch Vertauschung des Indices 3 und 4 A und B sich vertauscht, während C ungeändert bleibt, und ebenso durch Vertauschung von 2 und 4 sich A und C vertauscht, während B ungeändert bleibt, so gehen in diesem Ausdruck das zweite und dritte Glied aus dem ersten durch Vertauschung von 3 und 4, resp. 2 und 4 hervor. Nun ergibt die Multiplication sofort (vermöge Gl. 6)

$$A = x_{1}^{2}(x_{2} + x_{3})(x_{4} + x_{5}) + H,$$

$$B = x_{1}^{2}(x_{2} + x_{4})(x_{3} + x_{5}) + H,$$

$$C = x_{1}^{2}(x_{3} + x_{4})(x_{2} + x_{5}) + H,$$

$$-A + B + C = 2x_{1}^{2}(x_{2}x_{3} + x_{4}x_{5}) + H,$$

$$A(-A + B + C) = 2x_{1}^{4}(x_{2} + x_{3})(x_{4} + x_{5})(x_{2}x_{3} + x_{4}x_{5})$$

$$+ x_{1}^{2} \{(x_{2} + x_{3})(x_{4} + x_{5}) + 2x_{2}x_{3} + 2x_{4}x_{5}\} + H + H^{2}$$

und wenn wir zu dem letzten Ausdruck die zwei Ausdrücke addiren, die aus demselben durch Vertauschung der Indices 3 und 4 oder 2 und 4 hervorgehen, so erhalten wir nach (9) X_{11} in der Form

$$X_{11} = 4 x_1^4 \cdot S_1 x_2^2 x_3 x_4 + 4 x_1^2 \cdot S_1 x_2 x_3 \cdot H + 3 H^2,$$

wo die S_1 symmetrische Funktionen der x in Bezug auf die Indices 2, 3, 4, 5 bezeichnen. Es ist aber

nnen. Es ist doci

$$x_1^2 \cdot S_1 x_2^2 x_3 x_4 = x_1 S_1 x_2 \cdot x_1 S_1 x_2 x_3 x_4 - 4 x_1^2 \cdot x_2 x_3 x_4 x_5$$

$$= x_1 \cdot S_1 x_2 \cdot (H - x_2 x_3 x_4 x_5) - 4 x_1 \cdot x_1 x_2 x_3 x_4 x_5,$$

mithin

 $X_{11} = -16\,x_1^3.\,x_1\,x_2\,x_3\,x_4\,x_5 + 4\,x_1^2.\,\Sigma x_1\,x_2.\,H - 4\,x_1^2\,S_1\,x_2.\,x_1\,x_2\,x_3\,x_4\,x_5 + 3\,H^2$ oder schliesslich indem wir $-4\,x_1^3.\,x_1\,x_2\,x_3\,x_4\,x_5$ aus dem ersten Gliede entnehmen und zum dritten hinzufügen,

$$X_{11} = -12 x_1^3 \cdot x_1 x_2 x_3 x_4 x_5 - 4 x_1^2 \cdot \Sigma x_1 \cdot x_1 x_2 x_3 x_4 x_5 + 4 x_1^2 \cdot \Sigma x_1 x_2 \cdot H + 3 H^2,$$
(11)

wo die Σ symmetrische Funktionen der x im Bezug auf die sämmtlichen Indices $1\dots 5$ bezeichnen,

Man übersieht sofort, dass der Coefficient von $\frac{1}{a_i^2}$ in der Determinante (8) aus dem von $\frac{1}{a_i^2}$ durch Vertauschung der Indices 1 und i hervorgeht. Da nun die Form, unter welche wir den Coefficienten X_{11} von $\frac{1}{a_i^2}$ gebracht haben, ausser den Faktoren x_i^2 , x_i^3 nur symmetrische Funktionen der x enthält, so haben wir nur diese Faktoren durch x_i^2 , x_i^3 zu ersetzen, um den Coefficienten X_{ii} von $\frac{1}{a_i^2}$ zu erhalten.

3.

Wir gehen nun zur Berechnung des Coefficienten von $\frac{2}{a_1 a_2}$ in der Determinante (8) über und bezeichnen denselben durch X_{12} . Dann ist

$$X_{12} = \begin{cases} (345)(245)(235)(234) \\ (145) & o & (125)(124) \\ (135)(125) & o & (123) \\ (134)(124)(123) & o \end{cases} = \alpha + \beta \cdot (345), \quad (12)$$

wo

$$\alpha = \begin{cases} 0 & (245)(235)(234) \\ (145) & 0 & (125)(124) \\ (135)(125) & 0 & (123) \\ (134)(124)(123) & 0 \end{cases}$$
(13)

$$\beta = \begin{cases} 0 & (125)(124) \\ (125) & 0 & (123) \\ (124)(123) & 0 \end{cases} = 2(123)(124)(125). \quad (14)$$

Die Determinante α lässt sich entwickelt unter die Form bringen

$$\alpha = A^{1}(A - B - C) + B^{1}(B - A - C) + C^{1}(C - A - B),$$

wo A, B, C dieselben Grössen sind wie in den Gleichungen (10), hingegen A¹, B¹, C¹ aus diesen Grössen hervorgehen durch Vertauschung der Indices 1 und 2; es ist nämlich

$$A^{1} = (245)(123), B^{1} = (235)(124), C^{1} = (234)(125).$$

Nach (10) ist also

$$A^{1} = x_{2}^{2}(x_{1} + x_{3})(x_{4} + x_{5}) + H,$$

$$A^{1}(A - B - C) = -2 x_{1}^{2} x_{2}^{2} (x_{1} + x_{3}) (x_{4} + x_{5}) (x_{2} x_{3} + x_{4} x_{5}) -2 x_{1}^{2} (x_{2} x_{3} + x_{4} x_{5}) H - x_{2}^{2} (x_{1} + x_{3}) (x_{4} + x_{5}) H - H^{2}.$$

Die Vertauschung der Indices 3 und 4 führt diesen Ausdruck über in B (B - A - C), die Vertauschung der Indices 3 und 5, wobei sich B nicht ändert, A und C aber sich vertauschen, führt ihn über in C1 (C - A - B) und wir erhalten mithin für a folgenden Ausdruck

$$\begin{array}{l} \alpha = & -2\,x_{1}^{2}\,x_{2}^{2}\,\{\!(x_{1}+x_{3})\,(x_{4}+x_{5})\,(x_{2}\,x_{3}+x_{4}\,x_{5})\\ & +(x_{1}+x_{4})\,(x_{3}+x_{5})\,(x_{2}\,x_{4}+x_{3}\,x_{5})\\ & +(x_{1}+x_{5})\,(x_{3}+x_{4})\,(x_{2}\,x_{5}+x_{3}\,x_{4})\!\}\\ & -2\,x_{1}^{2}\,.\,S_{1}\,x_{2}\,x_{3}\,.\,H - 2\,x_{2}^{2}\,.\,S_{2}\,x_{1}\,x_{3}\,.\,H - 3\,H^{2} \end{array}$$

wo S₁, S₂ symmetrische Funktionen der x mit den Indices 2345, resp. 1345 bezeichnen. In der Klammer $\{--\}$ ist der Coefficient von x_1x_2 ersichtlich = 2 (345); die Coefficienten von x_1 und x_2 sind gleich, nämlich

$$(x_4 + x_5) x_4 x_5 + (x_3 + x_5) x_3 x_5 + (x_3 + x_4) x_3 x_4$$

= $(x_3 + x_4 + x_5) (345) - 3 \cdot x_3 x_4 x_5$.

Die Glieder endlich, welche weder x1 noch x2 enthalten, sind $2(x_3 + x_4 + x_5) x_3 x_4 x_5$, wofür wir setzen

$$\frac{1}{2} \cdot x_3 x_4 x_5 \Sigma x_1 - 2 (x_1 + x_2) x_3 x_4 x_5$$

und hiemit wird

$$\alpha = -4 x_1^3 x_2^3 (345) - 2 x_1^2 x_2^2 (x_1 + x_2) [(x_3 + x_4 + x_5) (345) - 5 x_3 x_4 x_5] - 4 x_1 x_2 \cdot x_1 x_2 x_3 x_4 x_5 \Sigma x_1 - 2 x_1^2 \cdot S_1 x_2 x_3 \cdot H - 2 x_2^2 \cdot S_2 x_1 x_3 \cdot H - 3 H^2.$$
(15)

Was den 2. Theil von X₁₂ betrifft, so gibt die Multiplication der Faktoren (123), (124), (125) sofort β in der Form

Abh. d. II. Cl. d. k. Ak. d. Wiss. XIV. Bd. III. Abth.

$$\beta = 2 \cdot x_1^3 x_2^3 + 2 x_1^2 x_2^2 (x_1 + x_2) (x_3 + x_4 + x_5) + 2 (x_1^2 + x_2^2 + 2 x_1 x_2) \cdot H.$$
 (16)

Indem wir diese Grösse mit (345) multiplicirt zu α addiren, erhalten wir für X_{12} den Werth

$$\begin{split} \mathbf{X}_{12} &= -2\,\mathbf{x}_{1}^{3}\,\mathbf{x}_{2}^{3}\,(345) + 10\,\cdot\,\mathbf{x}_{1}\,\mathbf{x}_{2}\,(\mathbf{x}_{1} + \mathbf{x}_{2})\,\cdot\,\mathbf{x}_{1}\,\mathbf{x}_{2}\,\mathbf{x}_{3}\,\mathbf{x}_{4}\,\mathbf{x}_{5} \\ &- 4\,\mathbf{x}_{1}\,\mathbf{x}_{2}\,\cdot\,\mathbf{x}_{1}\,\mathbf{x}_{2}\,\mathbf{x}_{3}\,\mathbf{x}_{4}\,\mathbf{x}_{5}\,\boldsymbol{\varSigma}\,\mathbf{x}_{1} \\ &- 2\,\left[\mathbf{x}_{1}^{2}\,(\mathbf{x}_{2}\,\mathbf{x}_{3} + \mathbf{x}_{2}\,\mathbf{x}_{4} + \mathbf{x}_{2}\,\mathbf{x}_{5}) + \mathbf{x}_{2}^{2}\,(\mathbf{x}_{1}\,\mathbf{x}_{3} + \mathbf{x}_{1}\,\mathbf{x}_{4} + \mathbf{x}_{1}\,\mathbf{x}_{5})\right]\,\cdot\,\mathbf{H} \\ &+ 4\,\mathbf{x}_{1}\,\mathbf{x}_{2}\,(345)\,\cdot\,\mathbf{H} - 3\,\mathbf{H}^{2}. \end{split}$$

Aber es ist

$$\begin{array}{l} 2\,x_{1}^{3}\,x_{2}^{3}\,(345) = \,2\,x_{1}^{2}\,x_{2}^{2}\,(x_{1}\,x_{2}\,x_{3}\,x_{4} \,+\, x_{1}\,x_{2}\,x_{3}\,x_{5} \,+\, x_{1}\,x_{2}\,x_{4}\,x_{5}) \\ = \,2\,x_{1}^{2}\,x_{2}^{2}\cdot\,H \,-\, 2\,\cdot\,x_{1}^{2}\,x_{2}^{2}\,(x_{1} \,+\, x_{2})\,x_{3}\,x_{4}\,x_{5} \end{array}$$

und hiemit wird

$$\begin{split} X_{12} &= 12 \cdot x_1 \, x_2 \, (x_1 + x_2) \cdot x_1 \, x_2 \, x_3 \, x_4 \, x_5 - 4 \, x_1 \, x_2 \cdot x_1 \, x_2 \, x_3 \, x_4 \, x_5 \, \boldsymbol{\varSigma} \, x_1 \\ &- 2 \, x_1 \, x_2 \cdot \{x_1 \, x_2 + x_1 \, x_3 + x_1 \, x_4 + x_1 \, x_5 + x_2 \, x_3 + x_2 \, x_4 + x_2 \, x_5 \} \cdot H \\ &+ 4 \, x_1 \, x_2 \cdot (345) \cdot H - 3 \, H^2 \end{split}$$

oder schliesslich, indem man 4 x1 x2 {---} H addirt und subtrahirt,

$$\begin{split} \mathbf{X}_{12} &= 12\,\mathbf{x}_{1}\,\mathbf{x}_{2}\,(\mathbf{x}_{1}+\mathbf{x}_{2})\cdot\mathbf{x}_{1}\,\mathbf{x}_{2}\,\mathbf{x}_{3}\,\mathbf{x}_{4}\,\mathbf{x}_{5} - 4\,\mathbf{x}_{1}\,\mathbf{x}_{2}\cdot\mathbf{x}_{1}\,\mathbf{x}_{2}\,\mathbf{x}_{3}\,\mathbf{x}_{4}\,\mathbf{x}_{5}\,\boldsymbol{\Sigma}\,\mathbf{x}_{1} \\ &- 6\,\mathbf{x}_{1}\,\mathbf{x}_{2}\cdot\left\{\mathbf{x}_{1}\,\mathbf{x}_{2}+\mathbf{x}_{1}\,\mathbf{x}_{3}+\mathbf{x}_{1}\,\mathbf{x}_{4}+\mathbf{x}_{1}\,\mathbf{x}_{5}+\mathbf{x}_{2}\,\mathbf{x}_{3}+\mathbf{x}_{2}\,\mathbf{x}_{4}+\mathbf{x}_{2}\,\mathbf{x}_{5}\right\}\,\mathbf{H} \\ &+ 4\,\mathbf{x}_{1}\,\mathbf{x}_{2}\cdot\boldsymbol{\Sigma}\,\mathbf{x}_{1}\,\mathbf{x}_{2}\cdot\mathbf{H} - 3\,\mathbf{H}^{2}, \end{split}$$

wo die Σ wie bisher symmetrische Funktionen in Bezug auf die sämmtlichen x bezeichnen. Hieraus ergibt sich der Coefficient X_{ik} von $\frac{2}{a_i a_k}$ für irgend eine Combination der zwei Indices einfach durch Vertauschung der Indices.

4

Um nun die ganze Determinante in (8) zu erhalten, haben wir den Ausdruck zu bilden

$$\triangle = \Sigma \frac{1}{a_i^2} X_{ii} + \Sigma \frac{2}{a_i a_k} X_{ik}, \qquad (18)$$

wo sich die erste Summe auf alle Indices i=1,2,3,4,5 erstreckt, die zweite auf alle Combinationen von je zwei Indices. Bisher haben wir

bei der Berechnung von X_{ii} und X_{ik} keinen Gebrauch gemacht von der identischen Relation, welche zwischen den x besteht. Vermöge dieser Relation tritt nun aber in dem Ausdruck (18) für die ganze Determinante eine wesentliche Vereinfachung ein. Diese Relation ist nach (2)

$$\frac{\mathbf{x_1}}{\mathbf{a_1}} + \frac{\mathbf{x_2}}{\mathbf{a_2}} + \frac{\mathbf{x_3}}{\mathbf{a_3}} + \frac{\mathbf{x_4}}{\mathbf{a_4}} + \frac{\mathbf{x_5}}{\mathbf{a_5}} = 0, \tag{19}$$

woraus durch Quadriren folgt

$$\Sigma \frac{{X_i}^2}{{a_i}^2} + \Sigma \frac{2 X_i X_k}{{a_i a_k}} = 0.$$
 (20)

Nun erhalten die zwei symmetrischen Funktionen

$$=4x_1x_2x_3x_4x_5 \Sigma x_1 \text{ und } +4\Sigma x_1x_2 \cdot H,$$

welche in X_{ii} und X_{ik} multiplicirt resp. mit x_i^2 und $x_i x_k$ eingehen, in dem Ausdruck (18) den Faktor $\sum \frac{x_i^2}{a_i^2} + \sum \frac{2 x_i x_k}{a_i a_k}$. Sie verschwinden daher in \triangle und mit Rücksicht auf diese Vereinfachung wurde eben X_{12} auf die besondere Form (17) gebracht.

Die ersten Glieder ferner in X_{11} und X_{12} (11) (17) liefern in \triangle die Glieder

$$= 12 \cdot x_1 x_2 x_3 x_4 x_5 \Sigma_{a_1^2}^{\frac{x_1^3}{4}} + 12 \ x_1 x_2 x_3 x_4 x_5 \Sigma_{a_1 a_2}^{\frac{2 \ x_1 \ x_2}{4}} (x_1 + x_2).$$

Diese zwei Summen lassen sich zusammenziehen. Denn die mit x² multiplicirten Glieder der zweiten Summe geben vermöge der Relation (19)

$$\frac{2\,\mathrm{x_{1}^{2}}}{\mathrm{a_{1}}}\left(\frac{\mathrm{x_{2}}}{\mathrm{a_{2}}}+\frac{\mathrm{x_{3}}}{\mathrm{a_{3}}}+\frac{\mathrm{x_{4}}}{\mathrm{a_{4}}}+\frac{\mathrm{x_{5}}}{\mathrm{a_{5}}}\right)=-2\,\frac{\mathrm{x_{1}^{8}}}{\mathrm{x_{1}^{2}}}$$

und es wird mithin

$$\Sigma^{\frac{2X_1X_2}{a_1a_2}}(x_1+x_2) = -2\Sigma^{\frac{x_1^3}{a_1^2}}$$

Die Summe der beiden Glieder reducirt sich dadurch auf

$$=36 \cdot x_1 x_2 x_3 x_4 x_5 2 \frac{x_1^3}{a_1^2}$$

oder da

$$oldsymbol{arSigma_1^{X_1^3}} = oldsymbol{arSigma_1} \mathbf{z}_1^3 = \mathbf{U}$$

auf — $36 \cdot x_1 x_2 x_3 x_4 x_5 \cdot U$.

Hiernach erhalten wir für 🛆 folgenden Ausdruck

$$\triangle = -36 \, x_1 \, x_2 \, x_3 \, x_4 \, x_5 \cdot U$$

$$-6 \sum_{\substack{2 \mathbf{x}_1 \mathbf{x}_2 \\ a_1 a_2}} \{\mathbf{x}_1 \mathbf{x}_2 + \mathbf{x}_1 \mathbf{x}_3 + \mathbf{x}_1 \mathbf{x}_4 + \mathbf{x}_1 \mathbf{x}_5 + \mathbf{x}_2 \mathbf{x}_3 + \mathbf{x}_2 \mathbf{x}_4 + \mathbf{x}_2 \mathbf{x}_5\} \cdot \mathbf{H} \\ + 3 \left(\sum_{\substack{2 \mathbf{x}_1 \mathbf{x}_2 \\ a_2 \mathbf{x}_3}} \sum_{\substack{2 \mathbf{x}_1 \mathbf{x}_2 \\ a_1 a_2}} \right) \cdot \mathbf{H}^2$$

Multipliciren wir diesen Ausdruck mit — $(a_1\,a_2\,a_3\,a_4\,a_5)^2$, so ergibt sich endlich die Hesse'sche Determinante der Hesse'schen Fläche in der zu erweisenden Form

$$H(H) = 36 PU - 3 QH$$
 (21)

als Funktion vom 8. Grad in den Variabeln und, wenn wir statt der x wieder die z einführen, vom 16. Grade in den Coefficienten a.

Setzen wir um abzukürzen $a_1 a_2 a_3 a_4 a_5 = t$, so ist hier

$$P = t^2 \cdot x_1 x_2 x_3 x_4 x_5 = t^3 \cdot z_1 z_2 z_3 z_4 z_5$$
 (22)

die Covariante 5. Ordnung und 15. Grads in den Coefficienten, welche das Pentaeder von U bestimmt; ferner ist

$$Q = AH - 2t^2R,$$
 (23)

wo

$$A = t^2 \left(\Sigma \frac{1}{a_1^2} - \Sigma \frac{2}{a_1 a_2} \right) \tag{24}$$

die einfachste Invariante von U vom 8. Grade ist 1) und

$$R = \sum \frac{2 x_1 x_2}{a_1 a_2} \{ x_1 x_2 + (x_1 + x_2) (x_3 + x_4 + x_5) \}$$
 (25)

$$= \Sigma 2 \, z_1 \, z_2 \Big\{ a \, a_2 \, z_1 \, z_2 + (a_1 \, z_1 + a_2 \, z_2) (a_3 \, z_3 + a_4 \, z_4 + a_5 \, z_5) \Big\}$$

gesetzt ist. Es ist mithin t² R, wie auch Q eine Covariante 4. Ordnung vom 12. Grad in den Coefficienten.

Diese in Q enthaltene Covariante t^2 R lässt sich leicht durch einfachere Covarianten von U ausdrücken. Denn man hat sofort

$$R = \Sigma \frac{2 x_1^2 x_2^2}{a_1 a_2} + \Sigma \frac{2 x_1 x_2}{a_1 a_2} (x_1 + x_2)(x_3 + x_4 + x_5).$$

¹⁾ Salmon "On quaternary Cubics". Phil. Trans. für das Jahr 1860. Vol. 150 p. 229. Auch Salmon-Fiedler "Geometrie des Raumes" 3. Aufl. II. Theil.

Die in der zweiten Summe mit $\frac{2 \, x_1^2}{a_1}$ multiplicirten Glieder sind

$$\frac{2 x_1^2}{a_1} \left\{ \frac{x_2}{a_2} (x_3 + x_4 + x_5) + \frac{x_3}{a_3} (x_2 + x_4 + x_5) + \frac{x_4}{a_4} (x_2 + x_3 + x_5) + \frac{x_5}{a_5} (x_3 + x_4 + x_5) \right\} \\
= \frac{2 x_1^2}{a_1} \left\{ x_2 \left(\frac{x_3}{a_3} + \frac{x_4}{a_4} + \frac{x_5}{a_5} \right) + x_3 \left(\frac{x_2}{a_2} + \frac{x_4}{a_4} + \frac{x_5}{a_5} \right) + \cdots \right\}$$

oder mit Hülfe der Relation (19)

$$= -\frac{2 x_1^2}{a_1} \left\{ x_2 \left(\frac{x_1}{a_1} + \frac{x_2}{a_2} \right) + x_3 \left(\frac{x_1}{a_1} + \frac{x_3}{a_3} \right) + x_4 \left(\frac{x_1}{a_1} + \frac{x_4}{a_4} \right) + x_5 \left(\frac{x_1}{a_1} + \frac{x_5}{a_5} \right) \right\}$$

$$= -\frac{2 x_1^3}{a_1^2} (x_2 + x_3 + x_4 + x_5) - \frac{2 x_1^2}{a_1} \left(\frac{x_2^2}{a_2} + \frac{x_3^2}{a_3} + \frac{x_4^2}{a_4} + \frac{x_5^2}{a_5} \right).$$

Es ist mithin

$$\begin{split} & \underbrace{\boldsymbol{\Sigma} \frac{2 \, \mathbf{x}_1 \, \mathbf{x}_2}{\mathbf{a}_1 \, \mathbf{a}_2} (\mathbf{x}_1 + \mathbf{x}_2) (\mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5)}_{= -\boldsymbol{\Sigma} \frac{2 \, \mathbf{x}_1^3}{\mathbf{a}_1^2} (\mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) - \boldsymbol{\Sigma} \frac{2 \, \mathbf{x}_1^2}{\mathbf{a}_1} \left(\frac{\mathbf{x}_2^2}{\mathbf{a}_2} + \frac{\mathbf{x}_3^2}{\mathbf{a}_3} + \frac{\mathbf{x}_4^2}{\mathbf{a}_4} + \frac{\mathbf{x}_5^2}{\mathbf{a}_5} \right) \\ &= - (\mathbf{x}_1 + \mathbf{x}_2 + \mathbf{x}_3 + \mathbf{x}_4 + \mathbf{x}_5) \boldsymbol{\Sigma} \frac{2 \, \mathbf{x}^3}{\mathbf{a}_1^2} + 2 \, \boldsymbol{\Sigma} \frac{\mathbf{x}_1^4}{\mathbf{a}_1^2} - 4 \, \boldsymbol{\Sigma} \frac{\mathbf{x}_1^2 \mathbf{x}_1^2}{\mathbf{a}_1 \, \mathbf{a}_2}. \end{split}$$

Nun ist 1)

thun 1st)
$$t^2(x_1 + x_2 + x_3 + x_4 + x_5) = t^2(a_1 z_1 + a_2 z_2 + a_3 z_3 + a_4 z_4 + a_5 z_5) \equiv L \quad (26)$$
die einfachste der vier linearen Covarianten von U vom 11. Grad in den Coefficienten;

$$t \cdot \Sigma \frac{x_1^2}{a_1} = t \Sigma a_1 z_1^2 \quad \equiv M \tag{27}$$

die einfachste quadratische Covariante vom 6. Grad in den Coefficienten;

$$t^2 \Sigma \frac{x_1^4}{a_1^2} = t^2 \Sigma a_1^2 z_1^4 \equiv N$$
 (28)

die einfachste biquadratische Covariante vom 12. Grad in den Coefficienten. Aus den beiden letzten erhält man ferner

$$t^{2} \Sigma \frac{2 x_{1}^{2} x_{2}^{2}}{a_{1} a_{2}} = t^{2} \Sigma 2 a_{1} a_{2} z_{1}^{2} z_{2}^{2} = M^{2} - N$$
(29)

¹⁾ Salmon a. a. O.

Hiernach ergibt sich

$$t^{2} \sum_{\substack{a_{1} \ a_{2} \ a_{1} \ a_{2}}}^{2 \ X_{1} \ X_{2}} (x_{1} + x_{2}) (x_{3} + x_{4} + x_{5}) = 2 \ L \cdot U + 4 \ N - 2 \ M^{2}$$

$$t^{2} R = -2 \ L \ U + 3 \ N - M^{2}$$

und endlich

$$Q = A H + 4 L U - 6 N + 2 M^{2}$$
 (30)

ausgedrückt in den einfachsten Covarianten von U.